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Abstract 
 
In the analysis of financial time series, the Autoregressive models with Conditional 

Heteroskedasticity (ARCH) and their generalization, the GARCH models, have been 
widely used, demonstrating their good qualities for modeling the volatilities typical of this 
type of series. As an alternative, Switching Markov models have emerged that allow the 
inclusion of random phenomena as possible structural changes in the mean or variance 
process. This paper aims to demonstrate the best suitability of these regime-switching 
processes for modeling the conditional variance of the IBEX-35 Index returns. 

 
Keywords: Conditional volatility, GARCH models, Switching Markov models, Regime, 
Stock index, Conditional heteroskedasticity. 
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1. INTRODUCTION 
 

Financial time series have different characteristics from the time series usually 
studied. The conditional variance is changeable over time and not observable, which 
requires a treatment by models that explain this particularity. 

In the analysis of financial time series, Autoregressive models with Conditional 
Heteroscedasticity (ARCH) and its generalization (GARCH) have demonstrated their 
greater suitability for the forecast of conditional variance than methodologies that start 
from the hypothesis of constant variance over time. However, (Klaassen, 2002) warns 
that these models do not behave efficiently in periods of financial stress, due to the high 
persistence exerted by large innovations on forecasts. 1(Lamoureux and Lastrapes, 
1990) state that this fact is due to the poor specification of volatility models, that is, when 
the process of conditional variance undergoes structural changes that are not taken into 
account in the description of volatility, the persistence of conditional variance is greater. 

(Hamilton and Susmel, 1994)  demonstrate that the prediction of volatility in a GARCH 
model (1,1) described by a first-order difference equation does not conform to the 
regularities observed in markets, as past innovations exert greater weight on volatility 
forecasts as the exponential decay parameter approaches one. 

The model proposed by (Cai, 1994) and later by (Hamilton and Susmel, 1994) of 
states with conditional heteroscedasticity, Markov Model of Switching-Regime ARCH 
incorporate possible structural changes experienced by the conditional variance of 
financial assets as a completely random phenomenon, described by an unobservable 
state variable. These models assume that the functional form of conditional volatility may 
be different between states or regimes and that it can be described depending on the 
state of the process (high or low volatility) since many economic series seem to follow 
stationary processes, but by different tranches (or periods). These sections can be 
explained by a 2 random, discrete, unobservable state variable explained by a Markov 
chain. 

This study is intended to compare the different treatment that ARCH and GARCH 
models without change of states and the Markov Model of Switching-Regime ARCH with 
change of state make on the conditional volatility of the returns of the IBEX-35 Index, 
and to establish if the latter conform to the stylized facts observed in the financial 
markets,  that is, if the Spanish stock market presents regime changes defined as states 
of high (or low) volatility, structural changes in the process of medium or variance and 
the persistence of large innovations.   

 
 
 

  

 
1 Cambios that can be generated in the structure of financial markets or the creation of new 
markets. 
2 A state is a situation of high or low volatility experienced by financial markets over a certain 
period of time. 
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2.  AUTOREGRESSIVE MODEL WITH ARCH CONDITIONAL 
HETEROSCEDASTICITY  

 
Classical linear processes with AR and MA do not take into account in the modeling 

of financial time series the conditional heteroscedasticity (non-constant conditional 
variability throughout the series) presented by these series. Engel proposed in the 
eighties the models with autoregressive conditional heteroscedasticity ARCH (for its 
acronym in English) for the analysis of conditional volatility that most financial time series 
present. Over time, a multitude of extensions have emerged such as the GARCH, 
EGARCH, MS ARCH models, etc. that better adjust the data.   

2.1. Preliminary considerations 

 Financial time series are not stationary and have some kind of trend. To avoid 
increasing volatility, the first difference of the logarithms of returns is taken: 

 

R = log 
X

X
 

 

 The Rt  series has a leptocurtic distribution. 
 Rt is white noise3. The autocorrelation function of the sample 𝜌(𝑙), 𝑙 ≠ 0 is not 

significantly different from 0. However, it is not noise iid. Que there is no 
temporal correlation in a linear model does not mean that it cannot exist non-
linearly4 

 Volatility clusterig. The volatility of these series usually forms groups. 
Therefore, there is a positive correlation between the squares of the yields 
being, therefore, heteroscedastically conditioned.5 

 

3.  AUTOREGRESSIVE MODEL WITH GENERALIZED 
CONDITIONAL HETEROSCEDASTICITY (GARCH) 

 

(Baillie and Bollerslev, 1992) they introduced a model in whose structure the 
conditional variance depends, in addition to the square of the delayed residues q  
periods, as in the ARCH(q) model, on the delayed conditional variances p periods. This 
model is known as conditionally heteroscedastic GARCH self-regulatory generalized. 

 
3.1. Model Specification 

 
Let be a stochastic process, being a discrete set of indices, and...  parameter vectors 

to model the mean and variance respectively;  the vector of explanatory variables 
observed in t, . In the model, y is the information available up to time t. The model is 
given by:{𝑦 } 𝑡 ∈  ΤΤ𝛽 = (𝛽 , 𝛽 , … , 𝛽 )𝜔 = (𝛼 , 𝛼 𝛼 , 𝛾 , … , 𝛾 )𝑥 = (1, 𝑥 , … , 𝑥 )𝑧 =

(1, 𝜀 , … , 𝜀 , ℎ , … , ℎ )𝜀 =  𝑦 𝛽𝜓  
 

 
3 Stock indices are usually random walks, so their rates follow white noise processes. 
4 𝐶𝑜𝑣(𝑅 , 𝑅 ) = 0However 𝐶𝑜𝑣 𝑅, , 𝑅  𝑦 𝐶𝑜𝑣(|𝑅 |, |𝑅 |) they don't have to be equal to zero, 
since the data does not have to be independent. 
5 The variability of yields depends on their recent changes. 
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𝑦 |𝜓  ~ Ν(𝜇 , 𝜎𝑡
2) 

𝜇 = 𝑥 𝛽 

𝜎 =  𝑧𝑡𝜔 =  𝛼0 + 𝛼𝑖

𝑞

𝑖=1

𝑦𝑡−𝑖
2 + 𝛽𝑖𝜎𝑡−1

2

𝑝

𝑖=1

 

𝜀 =  𝑦 − 𝑥 𝛽 
 
 

 
 

4. MODELOS MARKOV SWITCHING 
 
The previous study of the models without regime change has been necessary to 

establish the comparison between this type of models and those that, if they present a 
change of regime, all in order to find the most appropriate model for the returns of the 
IBEX-35. 

The Markov Switching models with regime change proposed by (Hamilton, 1989) 
were initially used for the study of non-linear economic and financial time series with 
structural changes. Currently they are used in many disciplines such as medicine or 
meteorology. These models describe time series by an unobservable and finite random 
variable, defined as the realization of a stochastic process that only takes discrete 
values, represented by a first-order Markov chain. 

 

4.1. Literature review 

 

Many economic or financial time series present changes in the evolution of their media 
process, which are due to exogenous or endogenous interventions; similarly, they exhibit 
nonlinear dependency structures. Therefore, its treatment in many applications requires 
using tools different from the traditional ARMA or ARIMA models. 

Due to the above, during the last two decades numerous instruments have been 
developed to analyze non-linear time series, among them the Threshold Autoregressive 
(TAR) models of (Tong and Lim, 1980), the Smooth Transition Autoregressive (STAR) 
models , neural networks, nonlinear space-state models. Also, the Markov Switching 
Models or models with Markov regime changes proposed by (Hamilton, 1994) stand out.  

(Marcucci, 2005)  evaluates forecast performance and Value at Risk (VaR) calculation 
using the GARCH(1.1), EGARCH(1.1) and MS-GARCH(1.1) models for the series of 
returns of the US Standard and Poor's 100 index in a period between 1988 and 2003 on 
a daily basis. The author finds the MS-GARCH(1,1) model superior in different prediction 
horizons, not being so for the calculation of the VaR where the model does not present 
advantages with respect to other methodologies. 

To adjust the DAX stock market index  of the German stock market (Wilfling, 2011) 
test the MS-GARCH models for a period between 2000 and 2009 contrasting different 
adjustments for conditional variance in the regimes. The author concludes that the 
specification of an APARCH model (from the family of asymmetric volatility models) with 
two possible volatility states is the one that best fits the data series. 

In order to explain the structure of dependence on energy prices in the Scandinavian 
countries (interconnected by a common electrical structure, but with different energy 
generating processes) (Haldrup and Nielsen, 2006) they affirm that, although the price 
remains relatively the same in each country, in circumstances of production restrictions 
the price may be different and subject to regime changes in line with the  productive 
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capacities. The authors propose a model where persistence in each state may be 
different. 

(Abounoori et al., 2016)  compare different GARCH specifications and MS-GARCH 
models to make forecasts on the tehran Stock Exchange index  with horizons of 22 days. 
The models are also evaluated for the calculation of the VaR. The authors presented 27 
models ranging from GARCH(1,1) without regime change, to an MS-AR-GARCH(1,1), 
the latter model being the one that presented a better behavior to forecast the 
performance of the index. 

Finally, many of the applications of the different methodologies that allow to explain 
the structure of dependence of the returns of the financial assets are motivated by the 
verification of the hypothesis of the efficiency of the markets defined by (Fama, 1965; 
Samuelson, 1965) 

the hypothesis of market efficiency as defined (Samuelson, 1965) postulates that the 
information available to all market agents is reflected in the price of assets, which implies 
that prices are impossible to predict or equivalently the forecast of the series of returns 
conditioned on the entire set of 𝑦 available information is zero𝐹 . One of the topics 
studied in relation to the market efficiency hypothesis is anomalies in financial assets.  
(Lo, 2008) defines this phenomenon as "a regular pattern in the returns of an asset that 
is reliable, widely known, and inexplicable." This definition refers to the seasonal patterns 
present in the processes generating the return data of financial assets. Research on 
these patterns they conducted (Lakonishok and Smidt, 1988) for the S&P500 index  
revealed the following results: 

 Monthly regularities: On average, asset returns differ between the first and 
second half of each month, being higher for the first half of the month, except 
for the last half of December. Likewise, there is a differential effect in the month 
of January associated with better returns of small companies in the United 
States. Finally, the authors find no evidence in favor of seasonal patterns for 
the rest of the months when the data are analyzed for each month as a whole 
and not by subsamples between months. 

 Weekend effect: Evidence is found in favor that there are significant 
differences between the returns of the different days of the week, particularly 
the returns turn out to be negative for Mondays or first business day of the 
week, while for each Friday or last business day of the week, they are positive. 

 Return of holidays: According to the authors, the returns of the working days 
before a holiday are higher than those associated with the Fridays in which 
the market normally operates. In contrast, the business day after the holiday 
is greater than the return of a usual Monday. 

 Month change effect: Its results indicate that asset returns are higher 
between the five business days that are around the change of month. 

 

4.2. Markov Switching Model Autoregressive of the first order, with two 
possible regimes. 

 
Defined by the equation: 
 

𝑦 = 𝜃 + 𝜙 𝑦 + 𝜎 𝜖 , 𝑠 = {1,2} 
 

Where and is the realization of an observable stochastic process with correlation 
structure between past and present realizations, 𝜖 ∽ 𝑖. 𝑖. 𝑑. Ν(0,1) and 𝛼 =  𝜎 𝜖 , 
represents the innovations of each period. The random variable st marks the current 
regime of the process in each period t, which allows to have two dependency structures  
.  The probability law for st is explained by a Markov chain of the first order of the type: 
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Ρ =
Ρ Ρ
Ρ Ρ

 

 
Where P is the transition matrix showing the probability that the process will pass to 

a state st = i since in t-1 it was in st-1 = j, with i,j = 1,2. 
Thus, each column of the matrix P runs through the entire probabilistic space of the 

variable state {st} conditioned to the realization in the immediately preceding period, 
{st−1};  therefore, the sum of each element Pi1 + Pi2 = 1, for i = 1, 2.  In addition, for the 
process {st} other important characteristics are assumed such as constant transition 
probabilities in time, ergodic (stationary) Markov chains, without absorbent states (0 < Pij 

< 1) and non-periodic (Hamilton, 1994). 
(Hamilton, 1994)  points out that the Scheme of Markov chains can be used to 

describe the process followed by the unobservable variable {st} because it generates 
significant forecasts. This type of model includes the possibility of short-term and atypical 
events occurring in very long periods of time such as events characterized by low returns 
and high volatility that would refer to a probable change of regime. the st process is 
described by a first-order autoregressive vector [VAR(1)]. To do this, define the vector: 

 

𝜉 =
(1,0)  𝑠𝑖 𝑠 = 1

(0,1)′𝑠𝑖 𝑠 = 2
 

 
Then, knowing that the transition probabilities represent a conditional expected value, 

the expected value of the process in the period 𝑠 t + 1 can be obtained, as follows: 
 

Ε|𝜉 |𝑠 = 𝑖|=
Ρ
Ρ

 

 
Ε|𝜉 |𝜉 |=Ρ𝜉 Therefore, and since the process st follows a first-order Markov 

chainΕ|𝜉 |𝜉 |𝜉 , 𝜉 , 𝜉 … . ] , then the result is obtained: 
 

𝜉 =  Ρ𝜉 + 𝑣  
 
Where 𝑣  is a sequence of random variables in which, at a given time,  
the conditional hope of the next value of the sequence, given all the above values, is 

equal to the present value. It is, therefore, a sequence in differences with zero mean. 
If we call the forecasts as F-steps ahead of the process {𝑦 }, we describe 𝜉  and their 

expected value up to the available information in t, using the following equations: 
 

𝜉 = 𝑣 + Ρ𝑣 + Ρ 𝑣 + ⋯ + Ρ 𝑣 + Ρ 𝜉  
 

Ε[𝜉 |𝜉 , 𝜉 , …] = Ρ 𝜉  
 
The above equations are fundamental in the process of estimating the parameters 

and in the inference of the realizations of the latent process {st}.  In addition, they are 
essential for the construction of the F forecasts of the process.{𝑦 } 

 
4.3. Estimate 

 

Two are the approaches mainly used to obtain the estimators of the parameter and 
the variable {st}. The first of these is the Maximum Likelihood Method that through the 
hope-maximization algorithm or EM algorithm, allows to obtain consistent and 
asymptotically normal estimates of the parameters and reconstruct the process {st} by 
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means of an iterative procedure (Douc et al., 2004). The second approach proposes 
Bayesian estimation methods from  Monte Carlo simulations that allow to obtain 
estimates of the parameters and the state variable together. 

 
4.3.1 Maximum Likelihood Method 

 

(Augustyniak, 2014)  development this method to obtain estimators of the parameters 
in specifications with components of moving averages in the mean process or GARCH 
parameters in the equation that describes the dynamics of conditional variance by 
implementing the EM algorithm, this allows to replace the realizations of the state 
variable 𝑠 = {𝑠 , 𝑠 , … , 𝑠 } by their expected values conditioned to the data that we will 
denote as Ρ(𝑠 = 𝑗|𝑦 , … , 𝑦 ; Θ) . The process will be repeated until the likelihood function 
is maximized (under some convergence criterion).  The procedure is outlined in the 
following steps: 

 
 Propose a set of initial values for each of the parameter vector components 

Θ( ) 
 

 Starting from an initial value for the beginning of the iterative schemaΡ 𝑠 =

𝑗 𝑦 , … , 𝑦 ; Θ( )  
 

 Iteratively calculate the expected values of the state variable given the data 
and the initial values of the parameters 𝑠 (𝑦 , 𝑦 , … , 𝑦 )Θ( ) for t=1, 
t=2,...,t=T, or know the equation:  

Ρ 𝑠 = 𝑗 𝑦 , … , 𝑦 ; Θ( ) = Ρ Ρ 𝑠 = 𝑗 𝑦 , … , 𝑦 ; Θ( ) , 𝑖, 𝑗 = 1,2 

 
 Once you have the  above values it is necessary to obtain the values of the 

density function of the data unconditioned to the state variable, for t=1, 
t=2,...,t=T 
 

 With all the elements it is necessary to evaluate  the likelihood function and 
obtain a new set of values for the parametersΘ( ) 

 
 Starting from Θ( )the entire described process is repeated until the maximum 

of the likelihood function is obtained or some convergence criterion is met.  

 
4.3.2 Bayesian estimation approach 

 

This methodology proposed by (Bauwens et al., 2010) in order to obtain the parameter 
vector estimators Θ and the reconstruction of the process {st} through the use of 
Bayesian methods. The authors develop this technique from three blocks. 

The first of these is composed of the entire sequence of the state variable𝑠 =
{𝑠 , 𝑠 , … , 𝑠 }. The second is composed of the  transition probabilities of the process {st}, 
Ρ = {Ρ , Ρ Ρ Ρ }.  The third is made up of the vector Θ =
(𝜃 , 𝜃 , 𝜙 , 𝜙 , 𝜔 , 𝜔 , 𝛼 , 𝛼 , 𝛽 , 𝛽 ).  

The general scheme consists of assigning a set of initial values to Ρ( ) and Θ( ), 
proceeding to take a random sample of the probability density functions of the state 

variable for each realization of the sequence 𝑠( ) = 𝑠
( )

, 𝑠
( )

, … , 𝑠
( )  conditioned to the 

initial values of Ρ( ) and Θ( ). Next, a random sample taken from the probability density 
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function   is obtained Ρ thus obtaining a set of possible values Ρ( ) conditioned to the 
sequence 𝑠( )  y Θ( ). 

Finally, a random sample of the probability density function of the Θ vector conditioned 
to 𝑠( ) and Ρ( ), achieving a possible realization of the parameter vector denoted by Θ( ). 
The above process is performed about 50,000 times. To make the inference on the 
parameters and the state variable, the last 30,000 possible realizations of the different 
blocks are left (Bauwens et al., 2010); represented as follows: 

 
 

𝑠( . ), 𝑠( . ), … , 𝑠( . )  
 

Ρ( . ), Ρ( . ), … , Ρ( . )  
 

Θ( . ), Θ( . ), … , Θ( . )  
 
 

4.4. Applying the model to the series 

 
For the modelling of the series of returns of the IBEX-35 index, the Markov Switching 

Autoregressive  model will be implemented following the study I carry out (Hamilton, 
1989) for the growth rate of the gross domestic product of the United States. 
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Figure 4.1 Markov Switching AR(1). Smoothed probability regimes 
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Figure 4.2 Markov Switching AR(2). Smoothed probability regimes 

 

The Markov Switching AR(2) specification, although having statistically significant 
coefficients, does not provide new information, in addition the graphical analysis confirms 
the inversion of the regimes. 

 

4.4.1 Markov Switching AR(4) 

 
The result of the estimate is shown in Table 

0.0

0.2

0.4

0.6

0.8

1.0

I II III IV I II III IV I II III IV I II III IV I

2018 2019 2020 2021 2022

P(S(t)= 1)

0.0

0.2

0.4

0.6

0.8

1.0

I II III IV I II III IV I II III IV I II III IV I

2018 2019 2020 2021 2022

P(S(t)= 2)

 
 

Figure 4.3 Markov Switching AR(4). Smoothed probability regimes 

 
 

4.5. Model selection 

 
For the selection of the model, the information criteria with their respective values are 
shown in Table 4.1 
 

Information criteria MS AR(1) MS AR(4) 

Akaike -6. 193243 -6.189677 

Black -6. 161382 -6.144062 

Hanna-Quinn -6. 181189 -6. 172417 
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Figure 4.4 Adjustment of the model without regime change to the returns of the IBEX-35 
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Figure 4.5 Adjustment of the model with regime change to the returns of the IBEX-35 

 

4.6. Comparison between models with change and without change of regime 

 
For the selection of the model, the information criteria with their respective values are 

shown in Table 4.2 
 

Table 4.2 Information criteria for models ARCH(4) and MS AR(1) 

 

Information criteria ARCH(4) MS AR(1) 

Akaike -6.157673 -6.193243 

Black -6.130383 -6.161382 

Hanna-Quinn -6.147346 -6.181189 
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The MS AR(1) model obtains the lower information criteria and, therefore, is 
determined to be the best model for modelling the returns of the IBEX-35 index. 

 
 
 

5. CONCLUSIONS AND RECOMMENDATIONS 
 
The present study aimed to answer the question of whether the return dependency 

structure of the IBEX-35 index could be adequately explained by Markov Switching 
models with  conditional heteroscedasticity, compared to models that do not take into 
account regime changes. For this, the selected sample covers the beginning of the covid-
19 pandemic, this fact being considered as a border between regimes. The methodology 
has consisted of a process of modeling, validation and the subsequent use of the models 
found for the realization of forecasts. We decided to implement a proposal in the search 
for possible models with bottom-up Way regime change, which consists of proposing 
very simple models and reviewing performance measures in each adjustment.  A 
detailed analysis of the  available information was carried out  , both quantitative 
(summary statistics and statistical contrasts), and qualitative (specific events  that could 
mark the history of the process) and  models that do not incorporate regime change were 
proposed.  in order to establish comparisons with Markov Switching models, ensuring 
that they pass the different validation tests.  It was determined that the process 
generating the data is an MS-AR(1) with two possible regimes, whose transition matrix 
of probabilities indicates a higher probability of remaining in the origin regime (0.99). The 
corresponding expected durations for each regimen are 130 days and 19, respectively.  
The superiority of this model for the modeling of financial series is contrasted by 
comparing the information criteria Schwarz (SBIC), Hannan-Quinn (HQC) and Akaike 
(AIC) that is established between the models without change of regime and their 
subsequent comparison with the switching models. 

The proposed methodology for the determination of a model with regime change has 
been satisfactory judging by the results obtained in the validations of the models and the 
comparison of these through the different information criteria. 

The models of the GARCH family, in particular the GARCH(1,1) have been superior 
in that they have obtained the values of the lowest information criteria.  It would therefore 
be advisable to compare these models with the Markov-Switching GARCH models, to 
establish the suitability of these models in the treatment of conditional volatility. The 
comparison of these models exceeds the objectives of this study. 

Because there is no consolidated framework for the determination of models that 
efficiently describe the behavior of the different financial series, it is interesting to develop 
this type of methodology that allows to find,  with a certain level of confidence, the true 
model that generates the data with regime change.  
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