
DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 1

Application of Genetic Programming to
Creative Sound Synthesis in Web Audio

Student Name: B.A. Collins
Supervisor Name: S.P. Bradley

Submitted as part of the degree of MEng Computer Science to the
Board of Examiners in the Department of Computer Sciences, Durham University

Abstract—In modern music, sound synthesisers are everywhere. A sound synthesiser (henceforth ‘synthesiser’) is a physical or
software device which generates a sound based on some set of input parameters. These devices have an extremely steep learning
curve, and often require significant financial investment, so have very low accessibility. In this paper, we present a tool which allows
users to creatively generate their own sounds (henceforth ‘patches’) with no prior knowledge required, and with no physical or digital
dependencies other than a modern web browser. This is accomplished by applying genetic algorithms to automatically explore the
parameter space of a simulated modular synthesiser, with the user selecting their favourite sound on a regular basis. Full control over
the parameters is also provided, as well as the option to export each patch in the Faust DSP format, for more experienced users. The
intended outcome is to produce a novel, easy-to-use, browser-based synthesiser generation tool that improves upon previous work on
this field and allows users of all categories to take part in sound design.

Index Terms—Evolutionary computing and genetic algorithms (I.2.m.c); Program synthesis (I.2.2.c); Signal analysis, synthesis, and
processing (H.5.5.c); Sound and music computing (H.5.5).

F

1 INTRODUCTION

O VER the course of nearly a century of electric sound
synthesis, artists have found myriad creative methods

to generate novel and interesting sounds. This diversity
makes synthesis a hugely exciting creative technique, but
also can stop it being financially or intellectually accessible.
Sound design features a steep learning curve, and industry-
standard software and hardware often costs far more than
many are willing to spend.

The aim of this research, then, was to allow users to
generate their own sounds through an abstract process
that allows them to focus on the sounds being generated,
without needing to immerse themselves in the details of
those sounds’ construction.

There are various techniques to synthesise sounds, and a
small number of the more popular options will be described
below. The techniques of additive synthesis, subtractive
synthesis, frequency modulation and modular synthesis will
be described in detail, and wavetable, granular and physical
modelling synthesis will be covered more briefly. For more
information on sound synthesis and its history, see [1].

Perhaps the simplest technique is additive synthesis: the
creation of timbres by adding sine waves together. This
method can theoretically recreate any sound with enough
sine signals, and Fourier transforms make it simple to find
the necessary harmonics for some sound sample. In this
technique, the sonic nuance comes from in the frequencies
and relative amplitudes of these waves. Subtractive synthe-
sis is the opposite of additive synthesis: it begins with a rich
timbre, generated by an oscillator or set of oscillators and/or
noise generators, and then subtracts harmonics using filters
which block frequencies outside a given range.

Popularised in the 1980s, frequency modulation (FM)
involves controlling the frequency of one ‘carrier’ oscillator

with the output of another ‘modulator’ oscillator. Essen-
tially, the carrier’s frequency input is being adjusted rapidly
in real-time. FM is capable of producing very complex
sounds, and tends to sound ‘messier’ than other, ‘cleaner’
modes of synthesis.

Other methods include wavetable synthesis (the play-
back of pre-designed repeating waveforms, often involving
realtime interpolation between several of these waveforms),
granular synthesis (taking very short ‘grains’ of sound
samples and playing these grains in combination), and
physical modelling (simulation of real-world physics and
sound transmission), but this is not an exhaustive review.
Modern standalone synthesisers typically offer several of
these techniques in a single box in order to facilitate a wide
range of timbres.

The most flexible form of synthesis, modular synthesis,
involves the physical interconnection of discrete ‘modules’
and tuning of physical knobs in order to find new and inter-
esting sounds. Its flexibility in both topology and numerical
parameter ranges means that most physical modular syn-
thesisers can recreate additive, subtractive and FM synthesis
by default, and with the inclusion of specialised modules
can recreate other methods also.

An example of a physical modular synthesiser can be
seen in figure 1 - note that the cable connections between
modules and the tuning of knobs both affect the sound(s)
produced. Similarly, a software modular synthesiser is vis-
ible in 2. Henceforth, the modules and the connections
between them will be known as a synthesiser’s ‘topology’,
and the values chosen on those modules’ controls will be
called ‘parameters’. The combination of topology and pa-
rameters will be known as a ‘patch’; this is a common term
in the synthesiser industry, derived from the fact that sounds



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 2

Fig. 1. An example of a modular synthesiser. Bennett, CC BY-SA 2.0,
via Wikimedia Commons.

Fig. 2. An example of a simple patch on a software modular synthesiser.
Generated using the Zupiter web synthesiser. This patch will be used in
other examples later in the paper.

are constructed on a modular synthesiser by connecting
modules with ‘patch cables’ as visible in figure 1.

By virtue of its flexibility, modular synthesis (albeit in
the software domain) has been the technique of choice for
some recent work in this area [2], and is also applied in this
paper.

Much previous work applying genetic algorithms to
sound synthesis (including but not limited to [2], [3], [4], [5],
[6], [7], [8]) has looked at the generation of sounds that are
similar to a given ‘target’ sound - which may be acoustically
sampled from a physical instrument, as an example. The
benefit of this strategy is that it provides a simple target: a
single, provided sound. This previous research has looked
at a range of different techniques to reproduce the target
sound as accurately as possible, and settled on a number of
robust genetic strategies.

A smaller minority of research ([9], [10], [11], [12]) has
been dedicated to a more creative process: allowing the user
to generate their own sounds, aided by a computer. In this
strategy, known as ‘Interactive Evolutionary Computation’
(IEC) [13], the user guides a computer as it searches a
synthesiser’s parameter space.

This work was intended to combine these approaches
- converging on a known ‘target’ sound, but allowing the
user to choose the target, and allowing multiple repeated
rounds of evolution with different targets. The focus on
creativity rather than accuracy also allowed for run times
to be reduced when evolving, as the end goal was only to
find sounds similar to the target, rather than sounds that are
the same.

The decision to model a modular synthesiser means that

the problem is twofold: firstly, a topology must be chosen,
and secondly, that topology’s parameters must be tuned.
This work absorbed parameters into the topology itself,
and allowed them to mutate along with the synthesiser’s
structure, in order to simplify the applied process.

A number of other simplifications have been made:
firstly, the modular topology has been limited to a tree in
order to allow simpler recursive definitions, mutation and
generation functions. Secondly, the focus has been placed
on the sound’s static timbre and temporal modulation has
therefore been removed from the genetic process. That is,
features which allow the sound to change over time like
envelopes and low-frequency oscillators (‘LFOs’) are not
modelled in the generated graphs. Finally, in order to in-
crease stability of the generated results, the sets of nodes
which can be connected together have been controlled in
the recursive functions to generate and mutate the topology.
These limitations are discussed in more detail in section 3.

It is also worth noting that this research was intended to
focus on the niche of sound synthesiser timbres, and not
on the related fields of automatic composition, synthesis
of media other than sound, machine learning methods or
human interface devices. These fields are relevant, but out
of scope for this project.

To summarise: the ultimate aim of this project was to
create an easy-to-use tool which enables the user to explore
the parameter space of a modular synthesiser through inter-
active evolutionary computation. The user is presented with
a number of pre-generated sounds and selects a favourite.
The computer then generates a small population of new
synthesisers, and uses genetic algorithms to converge on
the user’s chosen sound, before presenting its results to the
user for evaluation. The tool also allows the user to export
their patch in a portable format that can be compiled for
a range of different use cases. The implementation runs
in a standard web browser, meaning the user needs no
dependencies in order to operate it.

In the following section, a brief overview of relevant
literature will be presented. This will be followed by a
discussion of the methodology applied, including detailed
discussion of the design decisions that were involved in the
project’s implementation. Section 4 will examine the results
achieved with the tool in its final form, before the report is
concluded with a list of proposals for future study into this
area.

2 RELATED WORK

2.1 Search Strategy

Before embarking on the work of this project, the current
state of the art was established by searching the ACM Dig-
ital Library, IEEE Xplore, SpringerLink and Google Scholar.
Search terms used were:

genetic algorithms
genetic programming

evolutionary algorithms
sound synthesis

sound synthesizer configuration
sound matching

parameter estimation

https://www.flickr.com/photos/69139492@N00
https://creativecommons.org/licenses/by-sa/2.0
https://commons.wikimedia.org/wiki/File:MOTM_modular_@_NYU.jpg
https://z.musictools.live/


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 3

These were combined in pairs (one term from each box)
to find relevant research on the above sources. Any research
that cited particularly relevant papers ([2], [11], [12]) was
also included. The results were then filtered to exclude
duplicates and research into irrelevant areas as detailed in
section 1.

Finally, papers were evaluated based on their abstract,
then their conclusion and full text. Those with limited
relevance or poor text quality were discarded. This research
stage was completed on 23/10/2021, and gave us a final
shortlist of high-quality, relevant and non-duplicate studies
upon which to base our research.

2.2 Previous Work

In the application of genetic algorithms to the configuration
of a synthesiser, there are a number of factors that need
considering. The most important decision being made is
how the synthesiser will be represented, since this model
will be optimised by (and therefore restricts the choice of)
the genetic algorithm. Ideally, the model would be easy to
mutate, flexible in its representation of a synthesiser (so as
to achieve a wider range of sounds and techniques) and
computationally easy to use to generate a sound. A range of
methods with various compromises on these goals will be
discussed in section 2.2.1.

Moving onto the evolutionary algorithms themselves:
a range of strategies have been trialled, including deep
learning [14], but this project focusses upon the potential
of genetic algorithms to iteratively converge upon solutions
to the problem.

Section 2.2.2 will cover a selection of different fitness
measures employed by previous work. The ideal fitness
function would be computationally efficient and accurate at
measuring similarity in both timbre and pitch. There is also
the alternative strategy of using a human to judge fitness:
clearly, this slows the evolution process considerably, but
it allows the user to shape the direction that the algorithm
takes and therefore could be said to be much more creative
and useful than recreating pre-existing sounds.

Then, section 2.2.3 will discuss how the synthesiser
model dictates how reproduction can occur: when mod-
elled as a graph, it requires special graph modification
algorithms, but simpler representations such as parameter
bitstrings can be mutated and crossed-over in similar ways
to the nucleic acids that genetic algorithms are based on.
Typical reproduction methods include two-parent ‘sexual’
reproduction (involving some form of crossover), single-
parent ‘asexual’ reproduction (carrying forward the geno-
type with some random mutation chance) and an additional
step of random mutation applied to the entire population
immediately before or after the formation of a new gener-
ation. The former is simple to implement with more basic
synthesiser representations such as bitstrings, but becomes
more complicated with graph topologies, while the remain-
ing two can be implemented with all models. There are also
less obvious choices to be made, such as the strategy used
to select the individual(s) for reproduction and mutation, or
the specific types of mutation that will be applied (eg, in a
graph topology, there may be node type change, parameter
change, node creation, node deletion, etc).

Finally, section 2.2.4 will briefly cover interesting an-
cillary technologies and methods that past research has
employed.

2.2.1 Synthesiser Model
Many methods have been used to represent synthesiser
topologies in a manner that can be evolved and evaluated
in genetic algorithms. Since software synthesis is mostly
used, there is the option to automatically evolve the syn-
thesiser’s topology as well as its parameters. This can be
applied to many synthesis techniques, and even allows
these techniques to be combined. These structures, with dif-
ferent modules connecting to one another with both sound
and parameter signals, are most commonly represented as
graphs.

Initial explorations took a range of routes here - with
Takala et al. evolving topologies as ‘timbre trees’ [9], Horner
et al. evolving parameters for a fixed FM topology [5],
Jonsson et al. applying granular ‘Fonction d’Onde Forman-
tique’ synthesis [10] and Garcia developing virtual modular
synthesis topologies [6]. Trees were applied by Takala et al.
[9], Chinen and Osaka [7] and Garcia [6], with the latter em-
ploying ‘embryo trees’ which described the steps required
to construct a topology rather than explicitly describing the
topology itself. This allowed them to use cycles in their
topologies.

Later papers used more nuanced structures. Macret and
Pasquier [2] applied Mixed-Type Cartesian Genetic Pro-
gramming (MT-CGP), a method employing directed acyclic
graphs instead of trees. This allows the generated signal
paths to split and recombine, which by definition cannot
be accommodated by a tree. These are co-evolved with a
set of 3 input parameters - which are fixed ‘inlet’ values
passed into each topology in the population. This model
allows useful values to be retained, enduring generations
which may not use them.

An interesting approach was taken by Jonsson et al. [11]:
they evolved ‘compositional pattern producing networks’
(CPPNs): a type of artificial neural network which defines
a function based on a given set of parameters and is not
intended for conventional machine learning. These were
applied to wavetable synthesis, with one parameter being
varied to find the amplitude at different points in the table’s
period, and the additional provision of a series of sine waves
to modulate.

Tatar et al. [15] focussed on the Teenage Engineering OP-
1 synthesiser, with some success for this fixed topology.
However, they admit that this gives them a much more
limited search space (and therefore less timbral flexibility)
compared to their previous work on coevolutionary MT-
CGP. Later, Yee-King [12] developed EvoSynth - a web-
based interactive synthesiser. This tool uses a unit generator
graph model, and patches are constructed from oscillators
and filters.

SpiegeLib [4] is a general library for the configuration
of VST synthesisers using Python. In this project, the syn-
thesiser VST is imported and treated as a ‘black box’ with
its inputs being configured automatically by the library
and outputs being evaluated without any understanding
of how the two are linked. This essentially creates a fixed
topology, with only parameters being tunable by the genetic

http://www.yeeking.net/evosynth/


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 4

algorithm. Masuda and Saito used a similar method, also
applying their genetic techniques to VST synthesisers using
Python [8]. Both projects used the Dexed FM synthesiser,
and the latter also used Diva, a virtual analogue synthesiser.

Regardless of the model being used, it is important that
we can measure the ‘quality’ of a synthesiser in order to
make progress towards the algorithm’s goal. This is the job
of a fitness measure, which will be discussed next.

2.2.2 Fitness Measure

A number of fitness metrics have been proposed for eval-
uating the sonic outputs of a synthesiser. The most ob-
vious of these is human evaluation, used for ‘Interactive
Evolutionary Computation’ (IEC), and indeed this method
has been applied by [9], [10], [11] and [12]. This method
brings the benefit of allowing the user to tailor the outputs
towards a desired sound, or abstractly explore the space of
possible sounds, rather than being constrained by the set of
sounds that already exist, and the limited artistic potential of
analytical methods. However, it may take the user several
minutes to evaluate a population of sounds, so this does
drastically impact the rate at which evolution can happen.

Several more analytical methods have been applied, but
these usually converge upon a given target sound rather
than aiming to create ‘interesting’ new sounds. The most
obvious of these is performing a Fourier transform and
comparing the spectra between the produced sound and
target sound. Horner et al. used sum-squared difference be-
tween the two spectra, sampled at equally spaced intervals
between the beginning of the sound and the peak of its
amplitude [5]. Garcia also chose this method, applying it
alongside simultaneous frequency masking (SFM) [6]. This
strategy checks against a ‘threshold of masking’ in the am-
plitude domain - determining which frequency components
will be heard and recognised by a human and which are less
important and can therefore be allowed to deviate more.

Chinen et al. [7] chose to use a similar spectral method:
like the previously discussed strategy, they analysed the
spectra of sampled sounds and compared them - but they
placed sound above a certain amplitude into ‘bins’, and
combined adjacent bins in the frequency spectrum into
wider bins - hence resulting in fewer bins to analyse.

A more recent trend has been the use of Mel-Frequency
Cepstral Coefficients (MFCC). Initially developed for speech
recognition, MFCC takes a Fourier transform of the sound,
maps it onto the Mel scale (which models the human per-
ception of the frequencies in the Fourier transform), takes
logs of the powers in the Mel scale and finally performs a
discrete cosine transform on the resulting log powers. This
process returns 13 coefficients, which together represent the
timbre of the analysed sound.

MFCC was applied by [3], [2] and [4] to some success.
However, Masuda and Saito [8] noted that its design for
voice results in an increased focus on timbre and reduced
accuracy of pitch - less than ideal for musical applications.
They instead compared standard genetic algorithms to two
implementations using novelty as a fitness metric alongside
using log-spectral distance for competition, and found that
a combination of novelty and global competition performed
best.

When applying genetic algorithms, particularly to more
complex genotypes such as the graphs discussed above,
one of the most important considerations is the method
of reproduction. This choice decides how the algorithm
traverses its search space, so it is crucial that it is chosen
such that the population can gradually converge on good
solutions.

2.2.3 Reproduction

When producing new generations, a number of strategies
have been employed. The four main methods of generating
a new individual in genetic algorithms are the creation
of a new ‘immigrant’, the random mutation of an exist-
ing individual, the ‘crossover’ of two existing individuals
and the ‘carrying forward’ of an individual into the next
generation. These different methods can be combined, or a
single method can be chosen: the decision often depends on
the structures being evolved, as operations like crossover
may be difficult on, say, a graph. The individuals selected
for these operations are typically randomly chosen, but
weighted towards the fitter individuals as defined by the
functions above.

Takala et al. [9], with their tree-based topologies, em-
ployed a wide range of possible mutations - random node
replacement, changing of a parameter or function for an-
other one, or reordering of arguments. They also applied
a crossover where nodes are swapped between two parent
trees.

By contrast Horner et al., with their fixed topology,
encoded their genotypes as bitstrings [5]. These are much
more similar to real-world genotypes so more conventional
reproduction techniques were used. Random bitflip muta-
tion affected all individuals, parents were selected in a bi-
nary tournament (where each individual traverses knockout
rounds with fitness-weighted random results), and these
parents performed one-point crossover (choosing a point
on the gene and exchanging the sections after that point
to create two new hybrid children). Jonsson et al. also
used bitstrings and applied very similar methods, except
a weighted roulette wheel was used instead of the binary
tournament [10].

Chinen and Osaka used a method of mutation on their
trees where each node is mutated with probability m [7]. If a
node is mutated, the entire subtree beneath it is also mutated
- numeric parameters are adjusted randomly, and other
nodes are given the same probability m of moving in the
tree. There is also the option of splitting up a ‘NoiseBand’
(oscillator) into multiple children, based on a coinflip. Nodes
are given ‘allele markers’ which describe their evolutionary
history, and crossover is performed by randomly swapping
nodes, with preference given to nodes with similar allele
markers (and therefore similarly-structured subtrees). Dur-
ing crossover, parameters are chosen by finding a value
somewhere between the two parents’ values in that location.
Macret and Pasquier chose not to use crossover on their
directed acyclic graphs, instead using a 1 + 4 evolutionary
strategy involving copying from the fittest member of the
previous population with high rates (10%) of mutation [2].
The bitstring parameter sets are varied with random bitflip
mutations and 2-point crossover.



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 5

Jonsson et al., with their novel CPPN topologies, chose
to use NeuroEvolution of Augmenting Topologies (NEAT
- based on [16]) [11]. This evolution method begins with a
simple network topology and gradually increases networks’
complexity by adding and mutating nodes in the network.

For their ‘EvoSynth’ project, Yee-King [12] chose to use a
range of mutation methods (point, grow, repeat and shrink
mutation) as well as a crossover method (described as ‘knit-
ting together’ two genomes) and a high rate of immigration.

Finally, recent papers appear to have gravitated towards
variants of the non-dominated sorting genetic algorithm
(NSGA). Notably, [15] and [8] chose to use NSGA II, and
[4] used NSGA III. NSGA-II [17] measures both the fitness
and the ‘crowding distance’ (how different an individual is
to its peers) for each individual. A tournament process se-
lects individuals preferentially for higher fitness and greater
crowding distance.

2.2.4 Additional technologies
Alongside interesting techniques being used to directly rep-
resent and evolve synthesisers, there are other interesting
nuances in the way that these methods are applied. For
instance, [9] used their evolutionary methods to design
visual feedback to go alongside the sound effects generated
through synthesis - one example given was that of a ball
bouncing, with each bounce being aligned with a synthe-
sised sound effect.

Some researchers have also constructed their programs
on the Web. This makes the product much more accessible,
and has been facilitated by the relatively recent release
of the Web Audio API. As JavaScript is quite slow, the
Web is best suited to less time-dependent Interactive Evo-
lutionary Computation (IEC) methods where processing
latency is far outstripped by the time taken by the user
to evaluate the populations. Examples of this include [11]
and [12]. Fully automated systems would be held back by
the longer runtimes offered by JavaScript, and while the
modern WebAssembly pre-compiled format does offer a
higher-performance option, it remains in relative infancy.

Finally, the application of genetic algorithms to existing
standardised synthesis plugin formats has been recently
explored by various groups. Both Shier et al. ’s SpiegeLib
[4] and Masuda and Saito’s novelty-based methods [8] were
designed to automatically optimise the output of standard
VST software synthesis plugins. These plugins are common
in music production, and in the above work are modelled
as ‘black boxes’ with a set of MIDI inputs varying the
generated sonic output.

One technology of interest in this project is the Faust
(Functional AUdio STream) programming language: a func-
tional programming language specifically designed for
sound synthesis and processing, originally implemented by
Orlarey et al. [18]. It can be compiled into a wide range of
targets including web technologies like JavaScript, asm.js
and WebAssembly and more audio-focussed environments
like VCV Rack, Max and Pure Data. Its use in the web is also
well-documented [19], and it even has its own web-based
IDE. This makes it an attractive option for the generation of
truly cross-platform synthesiser topologies, so we hope to
make use of it in representing the patches we construct in
our own project.

3 METHODOLOGY

In this section the specific techniques and design decisions
employed in this project will be discussed. One major con-
sideration when implementing the application has been to
ensure that meaningful evolution happens on a reasonable
timescale, as making the user wait too long for results will
affect the usefulness of the tool.

The following user workflow was decided upon:

1) Generate and present a range of synthesiser config-
urations to the user

2) Allow the user to select a ‘favourite’ from this
collection of sounds

3) Analyse this favourite topology, and designate its
analysed sound as the ‘target’ sound

4) Perform a short period of evolution, aiming to create
sounds as similar to the target as possible

5) Present the resulting sounds to the user again, and
possibly allow them to repeat the process from step
2 indefinitely

Note that the user is able to guide the process, but
that the fourth step aims to converge on a given target
sound, meaning techniques from other works focussed on
reproducing a target sound can be employed in this stage.
In particular, the strategy put forward in [2] was used as
a basis for the evolutionary strategies constructed in this
project.

If the user desired to converge on a specific sound,
previous target sounds could be factored into each new
target, but the decision was made in this case to discard the
target once each round of evolution is complete. The hope
was that this would allow the user to be more exploratory,
rather than becoming stuck in any particular niche.

In order for the project to be as accessible as possible, a
static browser-based application was designed. This entirely
eliminates the need for user dependencies, and avoids the
additional complexity brought about by server-side pro-
cessing, but requires that the software run entirely in the
browser using JavaScript (JS). This limits the computational
performance of the solution when compared with other so-
lutions (such as [2] and [6]) which ran with more traditional
local software implementations. Additionally, previous im-
plementations would be left running for time on the order
of hours [2] or even days [6] on state-of-the-art university-
owned equipment. In this project’s case, any evolution
runtime higher than a few minutes on a consumer-grade
system would inevitably result in the user losing interest.

These performance drawbacks are less significant, how-
ever, when the methods of this project are taken into con-
sideration. Most of these previous approaches were aiming
to perfectly recreate a sound, and therefore needed higher
performance and runtimes in order to adequately explore
the whole problem space, whereas this project’s goal is to
imperfectly locate similar sounds that the user may enjoy
based on a selected favourite. As a result, the design goals
of the project mean that it does not need to find an optimal
solution - indeed, it is preferable that it finds similar sounds
from a range of different topologies, as this will allow the
user to more meaningfully explore the problem space and
take part in a more creative sound design process.

https://faust.grame.fr/
https://faust.grame.fr/
https://vcvrack.com/
https://cycling74.com/products/max/
https://puredata.info/
https://faustide.grame.fr/
https://faustide.grame.fr/


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 6

Finally, TypeScript (TS), a typed extension to JS which
allows the construction of more type-safe code, was selected
for the main implementation. Although the application is
static, TS does require compilation to JS before it can be
run in-browser, and the compiled Sass language was also
employed for styling. Therefore, Node.js was used to build
the application, in conjunction with the lightweight Vite
frontend build tool.

3.1 Sound Synthesis

The first problem to solve was how to represent the sound-
generating components of a synthesiser in the browser.
An ideal method would have the following characteristics,
listed in descending order of importance:

1) Abstract enough to be easily generated and mutated
programmatically

2) Flexible enough to allow for diverse signal chains
such as FM as well as simpler additive or subtrac-
tive synthesis

3) High in performance, to allow for rapid evolution
4) Portable, such that resulting patches can be used

in real-world sound design and music production
workflows

5) Compatible with the flexible and modern Web Au-
dio API

The Faust digital signal processing language was an
obvious choice for synthesiser representation, as it in-
stantly satisfies items 2, 4 and 5 in the above list, and
boasts a reasonably fast WebAssembly-based compiler,
faust2webaudio, which also lends it to item 3.

Finally, in order to satisfy item 1, an abstract module sys-
tem was constructed, using JS classes. In this system, a patch
is defined recursively, with properties and inputs passed
into the constructor, and Faust strings generated with a
recursive class function that is common to all node types. An
example of a TS patch, and its equivalent Faust DSP code,
can be found in figures 3 and 4 respectively. Faust topologies
are compiled to a single Web Audio AudioWorkletNode by
the faust2webaudio JS module.

Topologies are then contained within TypeScript-based
‘SynthContext’ constructs which provide the functions and
data storage necessary to handle the generation, mutation
and analysis of a single topology without causing interfer-
ence between these topologies. Each SynthContext ‘owns’
a number of Web Audio nodes which remain constant:
a GainNode used as a passthrough for topologies to be
connected to, a second GainNode used to control whether
the context’s topology should be heard by the user, and an
analysis node connected to the passthrough.

The passthrough node means that the rest of the analysis
and output nodes only need to be initialised and connected
once. In this system, when topologies need to be swapped,
the old one is disconnected and the new one is connected to
the passthrough. The rest of the SynthContext’s Web Audio
node structure can remain in place at all times.

A small collection of possible nodes is made available
when generating or evolving topologies, shown in table 1.
All evolved parameters, including frequencies, are mapped
to the range [0,1] for consistency. Frequencies (parameters

Fig. 3. An example patch, written in the TypeScript class structure
described above. This code describes the patch shown in figure 2, and
produces the code shown in 4.

in the range [20,20000] - the range of human hearing) are
mapped to [0,1] in the MIDIFreq node, and any frequency
inputs on oscillators are then mapped from [0,1] back to
[20,20000] in the Faust process code.

TABLE 1
The Types of Node Modelled in TypeScript.

Name Description

MIDIFreq Note frequency

Parameter A numeric value, controllable with a
UI slider

MathsNode Performs mathematical operations
on numerical values and/or signals

Oscillator Creates audible waves with one of
four basic waveforms

FrequencyModulator A wrapper node, containing an Os-
cillator and two Parameters, for FM

Note that the MIDI nodes are simply Parameters and
can therefore be controlled manually as well as manipulated
using MIDI messages. The FrequencyModulator node is
equivalent to an Oscillator being multiplied by one Param-
eter and added to another, in order to provide parametric
control over both modulation strength and frequency offset.

With this system, the program is fully capable of mod-
elling additive and FM synthesis. The presence of an enve-
lope and a filter on the output also gives it some of the
features of subtractive synthesis, but these processes fall
outside the topologies that are generated by the evolution-
ary process, and it therefore is incapable of generating truly
subtractive topologies.

3.2 Genetic Algorithms
With the synthesis methods in place, the next component to
design was the genetic algorithm itself. This was broadly
based on the work of Macret and Pasquier in 2014 [2].

https://www.typescriptlang.org/
https://sass-lang.com/
https://nodejs.org/en/
https://vitejs.dev/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/WebAssembly
https://github.com/grame-cncm/faust2webaudio
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorkletNode


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 7

Fig. 4. An example patch, written in Faust DSP code. This is the code generated by the structure in figure 3, and also models the patch shown in
figure 2.

In keeping with their strategy, a 1 + n elitist evolutionary
strategy was employed, and Mel-Frequency Cepstral Coef-
ficients were used in the fitness function.

However, as noted in the previous section, numeri-
cal genotypes were not employed to represent synthesiser
topologies: the abstract recursive node system defined im-
mediately above was used instead. This allowed more con-
trol over the generation and mutation of the synthesiser
topologies.

During evolution, each new best score is stored.

3.2.1 Generation and Mutation

Both the generation and mutation functions are defined
recursively.

The generate() function takes as an argument the type
of the node that it should return, and randomly generates
such a node, deciding the types of any children and then
calling itself to generate these. Once it has reached the
bottom of the tree, it returns the generated node and the
tree is constructed through recursive returns all the way up
to the root node.

For some node, a carriesSound property is true for
any Oscillator, and any MathsNode for which at least one
child has carriesSound=true. A graphSize value on
every node stores the number of nodes beneath that node in
the tree, including the node itself.

The type of the root node is decided by a wrapper
function which chooses either a MathsNode or an Oscillator
for the root (as all other node types will only return values
rather than audible sound). This function also ensures that
the root node has carriesSound=true, and graphSize
< gmax (where gmax is the largest permitted graph size,
set to maintain reasonable compilation times). If the root
node does not satisfy either of these requirements, it is
regenerated.

In a similar fashion, the mutate() function takes as an
argument the node in the existing topology that it is mutat-
ing, and chooses a uniform random number n in the range
[0,1]. If n is less than the mutation probability pm it will
‘mutate’ that node. If n is also less than some replacement
probability pr (≤ pm) that mutation will take the form of
a complete replacement. Otherwise (for pr ≤ n < pm),
it will mutate that node without changing its type. These
mutations are shown in table 2.

TABLE 2
The Mutations Available to Each Node Type

Node Type Mutated version

MIDIFreq A new MathsNode, multiplying
a new Parameter by MIDIFreq
(intended to produce harmonics
through additive synthesis)

Parameter A new Parameter node, with its
value randomised

MathsNode A new MathsNode, with the same
children but a randomised operation

Oscillator A new Oscillator, with the same chil-
dren but a randomised waveform

FrequencyModulator New MathsNodes, Parameters and
an Oscillator that together recreate
that FrequencyModulator’s func-
tionality but can be mutated more
easily in future

3.2.2 Fitness

As mentioned previously, the same Mel-Frequency Cepstral
Coefficients (MFCC) method as [2] was used for fitness.
Specifically, the Meyda.js [20] audio analysis library was
applied, as it is compatible with the same Web Audio API
that is employed by faust2webaudio. The Euclidian distance
between the coefficients returned by the MFCC process can
be used as a measure of sonic distance between two sounds,
as perceived by a human.

While much recent work has recommended and used
MFCC for tone matching [3], Masuda and Saito reported
in 2021 that it does less well at recognising pitch, resulting
in sounds that are similar in timbre but are not accurate in
pitch [8]. This is a bigger problem for those trying to match
an externally-sampled target sound, but should not affect
this work. The presence of the MIDIFreq node should mean
that the genetic process creates sounds that are either in
tune by default, or completely out of tune in the case that a
parameter controls an oscillator’s pitch.

In this research, we aim to characterise static timbres
rather than temporal evolution, so we set the pitch of any
MIDIFreq nodes in the topology, enable the gate and take
a single MFCC on a 1024-sample window of the resulting
sound (the window length being taken from [2]). This is
repeated for three notes evenly spaced across the frequency
spectrum - C2, A4 and F7 - yielding three sets of 13 coeffi-

https://meyda.js.org/


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 8

cients for analysis. The average Euclidian distance between
these three sets of coefficients for the candidate sound and
the target sound is then computed, and finally the fitness is
calculated from the resulting distance:

dnote(a, b) =

√√√√ Nc∑
i=1

(aj − bj)2

doverall(t, c) =

∑
i∈[C2,A4,F7] dnote(ti, ci)

3

fitness(c) =
1

1 + doverall(t, c)

In these calculations, t is the set of three note readings
for the target sound, c is the corresponding set of readings
for the candidate sound, and ai is the ith member of the set
of readings a.

3.3 Performance

The biggest potential issue with this project is its com-
putational performance. JavaScript is not known for its
performance [21], and the processes being taken on here
are non-trivial, particularly in the case of compilation. There
has also been a significant recent increase in the number of
cores available to the average consumer with new devices
[22]. Therefore, the intention was to try and maximise the
parallelism of the system on these time-consuming tasks, so
much discussion in this section will be devoted to paralleli-
sation.

During the development of this project, asynchronous
processing techniques such as JavaScript’s Promise and
Async/Await constructs were used regularly with the aim
of parallelising computationally intensive tasks such as syn-
thesiser compilation. While JavaScript in theory does not
run in parallel, instead using context-switching to perform
asynchronous processing [23], the intention was to ensure
that time-consuming tasks would not block the main thread.
It also would make retrofitting full parallelisation easier if
that was to take place.

During evolution, CPU usages of greater than one core
by a single tab have been observed, so it may be that
the asynchronicity built into the system has enabled the
Chromium engine to parallelise the intensive parts of the
evolutionary process after all. This may also be due to
background AudioWorklet processing, however, as Audio
Worklets are essentially lightweight Web Workers and can
therefore be parallelised [24].

It is also worth noting that significantly lesser perfor-
mance was experienced when the browser was not in the
foreground: this is likely due to power optimisations that
limit JavaScript processing when the tab is not the user’s
focus.

3.3.1 Faust Compilation
The most significant time sink during evolution was gen-
erally found to be the compilation of Faust patches. The
magnitude of its impact is discussed in more detail in sec-
tion 4.2, but it was generally observed during development
to take on the order of seconds for larger patches.

The option of using Web Workers for compilation was
evaluated, but discarded as these workers currently do not
support Web Audio [25]. The faust2webaudio module di-
rectly returns a Web Audio node, and takes the current Web
Audio context as a parameter, so this made Web Workers
impossible for this task.

One unfortunate downside discovered with the
faust2webaudio compiler during implementation was that
it appears to retain references to compiled nodes internally.
The result of this is that, even after disconnecting them from
the output, calling their destroy() function and deleting
all reference to the Web Audio node, the nodes are still
not garbage collected by the JavaScript engine. This was
confirmed using a basic test case where clicking a button
generated a new Faust node as well as a new Web Audio
GainNode, and then deleted the reference to these items.
The GainNodes were periodically removed, whereas the
FaustAudioWorkletNodes remained in place. They do not
seem to occupy too large a footprint in terms of system
resources, but they still accumulate over larger evolution
cycles, and therefore may cause the program to become
unstable if used for an extended period. The test can be
found at gc-test.html in the source code repository.

3.3.2 Analysis
In its current state, the implementation processes the MFCC
analysis in real-time. While Web Audio does have support
for offline (that is, faster-than-realtime) processing, this was
unfortunately not prioritised for this project, as the main
performance impact comes from the Faust compilation. It
remains an interesting avenue for future exploration in this
area, though realtime analysis does have one advantage: it
allows the user to hear the evolution happening - a useful
insight into the workings of the evolution process. A switch
is present in the user interface to toggle this option.

The MFCC analysis is also performed sequentially. Even
though there is the capacity for concurrent analysis thanks
to the disconnection of SynthContexts’ graphs, testing with
identical sinewave patches (which should have returned
fitnesses of at least 0.99) showed that parallelising analysis
had a negative impact on the accuracy of the MFCC, causing
it to be much more variable and reaching as low as 0.6. It
is believed that the reason for this is the aforementioned
non-parallelism of JavaScript’s asynchronous processing.

3.4 Interface

A screenshot of the application can be seen in figure 5.
Note that, as well as control over the value of every Pa-
rameter node in each of the four visible patches, the user is
also presented with a number of simple controls to shape
the produced sound. These include an amplitude envelope
(which can also be triggered with an onscreen button), a
low-pass resonant filter and gain control.

The user interfaces are constructed using the faust-ui
module, which provides functionality to generate an HTML
interface for a given Faust patch in an iframe. Messages are
sent in both directions between the patch and the interface,
allowing all changes made to be displayed on the interface.

Faust also supports MIDI by default, so the WEBMIDI.js
module has been used to integrate MIDI messaging with

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://github.com/grame-cncm/faust-ui
https://webmidijs.org/


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 9

Fig. 5. Screenshot of the application in use.

the onscreen patches. This allows the user to audition
the provided patches in realtime, playing notes and even
adjusting parameter values with their physical hardware.
The gate, gain and frequency controls can be controlled
through MIDI key on/off messages, MIDI note velocity and
MIDI note frequency respectively, and each patch features
4-voice polyphony to allow the user to play the synthesiser
interactively with their physical MIDI hardware.

For each patch, there are also buttons to view the Faust
process code of that patch (minus the boilerplate Faust
syntax, definitions and output components like filter and
envelope), and view the patch’s full code (including the
aforementioned). The first button can be used to more easily
understand the interactions taking place within a patch, and
the second can be used to export the patch for use elsewhere.
The overlay displaying the code also includes buttons to
copy it to the clipboard or save it to disk as a .dsp file.

Also considered was the option of displaying the patch
as a graph (a function that is supported by faust2webaudio)
but the results are quite verbose, dominated by the ‘outer’
user control elements like the envelope and filter, and quite
large. They may be useful for a Faust developer, and indeed
are shown in the Faust IDE, but would clutter the interface
for the casual user.

The MIDI and evolution selection buttons respectively
choose which patch should be controlled by incoming MIDI
messages and select the target sound for a round of evolu-
tion. The ‘Stop note(s)’ button cancels any currently playing
notes on that patch - this is useful in the case of, eg,
switching to a different patch for MIDI whilst holding notes
down on the MIDI controller.

There are also bar charts at the bottom which display the

current MFCC values for their corresponding patches - this
serves a dual purpose of allowing MFCC-based comparison
of patches as well as providing the user with a visual cue to
see which patch is currently making sound.

Once a user has chosen a favourite patch for evolution,
they select it using the button corresponding to that patch
and click the large ‘EVOLVE’ button in the top panel. The
application will then allow evolution to take place in the
background, leaving the existing UI elements accessible
for further user experimentation. During evolution, each
topology that generates a new best fitness is stored in an
object alongside its fitness. Once evolution is completed, this
object is returned and the highest-scoring patches are placed
back into the interface for user experimentation.

3.5 Summary

To summarise, the application has been written in Type-
Script, using Node.js to build the source code into a sin-
gle static web-application with no server component. The
faust2webaudio library enables high-performance synthe-
siser compilation within the browser using WebAssembly,
and the Web Audio API is employed to facilitate both audio
output and analysis.

The program involves two main intensive processes:
compilation and MFCC analysis. Wherever possible, inten-
sive but parallelisable sections of the program have been
made asynchronous to ensure that the main thread is not
blocked, to allow browsers to optimise performance, and to
open the door to true parallelisation in the future.

https://faustide.grame.fr/


DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 10

4 RESULTS & EVALUATION

Before testing the quality of the solution, various parameters
first had to be optimised. This process will be covered
in section 4.3, before experimental results are discussed in
section 4.4.

Tests were run in Windows 10 21H2 Microsoft Edge
version 100 on a Dell XPS 15 9550 laptop computer, with a
quad-core Intel Core i5-6300HQ (released in 2015) and 16GB
of memory at 2133 MHz. The laptop was slightly elevated
in order to ensure adequate ventilation and minimise heat
build-up over the course of multiple tests. The hope was that
this machine’s processing performance would be roughly
equivalent to a typical device used by the average consumer.

4.1 Fitness Testing
In order to verify its accuracy, the MFCC fitness measure
described in the previous section was tested against human
perception of sound similarity. Two sounds were randomly
generated, and played to the user in the C2-A4-F7 method
described above (albeit at a slower 8192-sample or 0.17-
second note length). The user then ranked the similarity
of the sounds on a scale of 1-10, and this was stored
alongside the MFCC measurement of similarity between the
two sounds. The second sound then became the first sound,
and a new sound was generated to be played second.

This process was then repeated over 300 times, across
several test sessions, and the program defining it can be
found in mfcc-test.ts in the source repository. The re-
sults can be seen in figure 6.

0

2

4

6

8

10

Pe
rc

ei
ve

d 
tim

br
al

 si
m

ila
rit

y

MFCC fitness against perceived timbral similarity

10 3 10 2 10 1 100

MFCC fitness

Co
un

t Count

Fig. 6. MFCC fitness plotted against human-perceived similarity be-
tween randomly-generated pairs of sounds. The ‘count’ histograms
show how many datapoints exist in bins spanning their respective axes.

As shown in the figure, a clear positive correlation be-
tween the MFCC fitness and the perceived similarity was
observed. While the correlation was very much non-linear,
this is of little consequence in the use case of this project as
the fitness measure is only used to compare absolute values.
A value indicating higher fitness only needs to be larger
than other, less fit pairings - the ratio between them does
not matter.

During testing, it was observed that the magnitudes of
MFCC values appear to scale with the volume of the sound
they represent. Therefore, it is possible that sounds with
similar timbre but different volumes could be scored highly

by the human but not by MFCC, and it is believed that
this may explain the instances where the human assigned a
score of 5-8 but MFCC did not score as highly. Normalising
the MFCC results may help resolve this problem, as the
relative values appear to remain similar, but this was not
implemented in the current system. The downside of this
approach would be that the volume effectively is removed
from the fitness function, which is not desirable. The fitness
function could be adjusted to slightly penalise differences in
volume, but there was not time to implement this here so
the normalisation was left for further exploration.

4.2 Compiler Performance

As mentioned in the previous section, Faust compilation
was the main time sink during evolution; see figure 7 for
a plot showing the time taken to compile synthesisers with
a range of sizes. These measurements were taken with
compilation taking place consecutively, and graph size was
capped at 100 nodes. The 11 ‘user interface’ nodes (filter,
envelope etc) are also compiled but not included in the
count. Note that the lower values are in the region of 140ms,
whereas the highest time taken was 174 seconds for a patch
with 54 nodes.

102

103

104

105

Co
m

pi
la

tio
n 

Ti
m

e 
(m

s)

Compilation time against TypeScript graph size

0 20 40 60 80 100
Graph Size

Co
un

t

Fig. 7. Compilation times in faust2webaudio. The ‘count’ histogram
shows how many datapoints exist in bins spanning the x-axis.

These results are still very acceptable for an in-browser
compilation, thanks in part to the Web Assembly system
powering the faust2webaudio module, and setting a max-
imum topology size of 30 nodes ensures that time taken
remains under 3s for the vast majority of compilations.

4.3 Time Optimisation

The first parameters to be optimised are those that affect the
time taken to evolve. In all of the tests in this subsection, the
mutation chance pm was 0.3 and the replacement chance pr
was 0.1 (though these should not affect time results). The
patches being chosen for evolution were those with process
code of 100-200 characters - this is a medium complexity, as
process codes can range from around 20 characters to nearly
400 with gmax <= 30.

The target time is three minutes (180 seconds): any time
longer than this would likely cause the user to lose interest.
Evolution time was tested whilst varying population size



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 11

0 20 40 60 80 100
Generation Count

0

100

200

300

400

500

600
Ev

ol
ut

io
n 

Ti
m

e 
(s

)
Evolution time for varied generation count & population size (gmax=20)

1p
2p
4p
8p
16p

180s

(a) Evolution time for gmax = 20.

0 20 40 60 80 100
Generation Count

0

100

200

300

400

500

600

Ev
ol

ut
io

n 
Ti

m
e 

(s
)

Evolution time for varied generation count & population size (gmax=30)
1p
2p
4p
8p
16p

180s

(b) Evolution time for gmax = 30.

Fig. 8. Evolution time, plotted against generation count for a range of
population sizes, across two different values of gmax. Points that are
believed to be anomalous are plotted with open circles, and not taken
into account when calculating trendlines.

np, generation count ng and the maximum graph size gmax.
Results are presented in figure 8.

Generally speaking, the tensions here are quality of
results against time: higher population size and higher
number of generations would increase runtimes but allow
more mutations to occur, allowing the evolutionary process
to explore the search space more.

Similarly, higher gmax would allow more complex syn-
thesis graphs to exist and would theoretically increase
average compilation time. Surprisingly, however, setting
gmax to 30 appears to produce more consistent timings (for
smaller timespans at least) than when gmax = 20. From
both these tests and experience using the system, it does
tend to scale less reliably at higher generation counts and
population sizes, however. Not visible on this graph are
elapsed times of over 45 minutes for np = 8, ng = 100 and
np = 16, ng = 20, and 10 minutes for np = 8, ng = 50. The
only anomalous results for gmax = 20 were the visible 565-
second time for np = 8, ng = 70 and a time of 808 seconds
for np = 8, ng = 100.

Referring back to 7, it can be seen that graphs with size
between 20 and 30 could take time up to the order of 20
seconds to compile in rare cases, whereas graphs under 20
are consistently under 5 seconds for maximum compilation
time. Having larger populations and/or higher generation

counts increases the probability that one or more of these
rare cases occurs, which would explain the inconsistent time
taken for these larger values.

From this experimentation, values of gmax = 30, np =
4, ng = 50 were chosen. As mentioned previously, the
algorithm used here is loosely based upon the work of
Macret and Pasquier in 2014 [2], which used values of
np = 4, ng = 5000. The difference in ng can be explained
by the difference in intended runtimes: Macret and Pasquier
intended for their program to take on the order of hours and
find perfect matches, whereas this algorithm should run on
the order of minutes and find similar sounds.

They were then tested to see how they performed on two
different systems: the aforementioned laptop system, and
a desktop computer running Windows 11 21H2, Microsoft
Edge version 100, an AMD Ryzen 7 2700X (released in 2018)
and 16GB of memory at 2400 MHz. This machine has a
more modern processor that runs at a higher clockspeed,
so should perform better. The results are depicted in figure
9 and appear to be generally as expected. Runtimes rarely
exceed the 180s target on either device.

Desktop Laptop
0

20

40

60

80

100

120

140

160

180

200
Ev

ol
ut

io
n 

Ti
m

e 
(s

)
Evolution time for two different computer systems

Fig. 9. Evolution time with gmax = 30, np = 4, ng = 50 on two different
computer systems. Results taken over 8 repeats.

4.4 Convergence Optimisation

With np, ng and gmax optimised, only the probabilities pm
and pr remained to be tuned.

While the ratio of pm/pr determines what form muta-
tions take, their magnitude decides how often these mu-
tations occur in the first place and therefore will have a
larger impact. Therefore, the priority was to optimise the
magnitude first. The ratio pm/pr ≈ 3 was chosen, meaning
one in three mutations would replace the node instead of
adjusting its properties. This ratio was employed for the
remainder of this project, to keep the remaining settings
consistent while the magnitude was varied.

The magnitude of pm was varied across a wide range,
and synthesiser patches of varying complexities were also
trialled. The four categories of patch complexity are por-
trayed in table 3.

It is worth noting that patches with one oscillator were
not considered complex enough to be ‘small’. These patches



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 12

TABLE 3
Synthesiser Patch Complexity

Complexity Criteria

Trivial A single basic Oscillator, with its
frequency controlled by MIDI

Small Not trivial; process code length (in
characters) ≤ 100

Medium 100 < process code length ≤ 200

Large 200 < process code length ≤ 400

are sonically just trivial patches being operated on by math-
ematical operations and parameters, so sound timbrally
identical to the true trivial patches. A small patch was
generally considered to contain at least two oscillators,
then, combined with additive synthesis, FM synthesis or
amplitude multiplication.

The results can be seen in figure 10. Twenty combinations
of parameter value and synthesiser complexity were tested,
and each combination was repeated four times. For each
repeat, the minimum fitness, average fitness and maximum
fitness in each generation was taken. These minimums,
maximums and averages were then averaged across the four
repeats in order to produce more consistent plots.

The global maximum fitness, over all 50 generations, was
also measured for each repeat, yielding four ‘best’ values for
each combination. These represent the fitness of the ‘best’
sound, which would have been presented to the user at the
end of the process. The minimum, maximum and average
of these values is depicted on each plot as the horizontal
bands which span the widths of the plots. A tighter range
reflects a more consistent result, and higher ranges reflect
better results.

The ideal outcome, therefore, is a convergence plot that
travels upwards over the course of the generations, with a
tight band of global best values towards the top of the range.

The synthesiser complexity will vary with the user’s
selection, so the goal of this experiment is to choose a
probability setting (column) which yields the best results
for the widest range of complexities. It is worth noting
that, towards the right hand side, the evolution is more
chaotic: for higher mutation probabilities, it is closer to
randomising the members of each new population. This
essentially samples random points in the parameter space,
and does not yield any opportunity to converge. For lower
probabilities (on the left hand side), the opposite is true.

Looking at figure 10, a number of interesting trends can
be seen. Firstly, as the probability of mutation grows, the
graphs generally become less consistent and more erratic.
This is as expected, and reflects the aforementioned effect
where the search ‘bounces’ all over the parameter space.
Similarly, for lower probability values, the search appears to
generally remain in the space that it starts in.

Both of these behaviours are problematic: in the former
case, the search will not remaining in promising niches for
longer than a few rounds. In the latter, the algorithm will
not manage to explore the space much, instead attempting
to converge instantly.

The trivial patches, unsurprisingly, are responsible for

all five of the best global results. This is likely because these
very simple graphs are often generated randomly by the
program. It only takes one Oscillator(MIDIFreq) graph to
be generated before the evolutionary algorithm has all but
solved the problem: from this point on, the only param-
eter requiring mutation is the waveform of the Oscillator.
These trivial patches, being the most basic forms of sound
synthesis, are also not particularly useful or interesting. For
these reasons, they will not be prioritised in the optimisation
process.

Of the five columns, the only one that appears to show
a consistent controlled convergence is the second column,
for which pm = 0.1, pr = 0.03. It performed extremely
well for the medium patches in particular, but does not
appear to converge as well for complex patches. This is no
surprise given that these patches are always going to be far
more timbrally complex than smaller examples. These more
nuanced sounds will take more optimisation before similar
sounds are generated, so it may be that more generations
(and therefore more time) are needed for these sounds to
converge. It also does not appear to perform particularly
well for small patches, but these patches did not converge
meaningfully with any combination of mutation probabil-
ities. Indeed, it appeared to converge most in the second
column, albeit rapidly and unfortunately without much
success.

The pm = 0.1, pr = 0.03 combination was then evalu-
ated for a second time, with more repeats to average over. It
was also evaluated for longer periods, with the hope being
to observe the evolution over longer periods than those
possible in this project’s current format.

With this combination of mutation probabilities, a fur-
ther round of testing was conducted. 8 repeats were made
for each patch size, and testing continued for 250 genera-
tions, rather than the previous 50, in an attempt to identify
an upward trend in the more complex category of synthe-
siser. The results of this test are shown in figure 11.

Figure 11 appears to show that the parameters pm =
0.1, pr = 0.03 work well: all four graph sizes rapidly
converge in the early stages of the algorithm, and show ev-
idence of continuing to explore as the generations progress.
In all plots, periods of improved and worsened performance
are clearly visible, indicating that the algorithm continues to
explore the space even after stabilising on a local maximum.
Since strong performers are saved globally over all gener-
ations (rather than taking the best individual in the final
generation), this is a useful trait: the algorithm has time to
perfect strong candidates, but also will not linger on those
candidates indefinitely, missing higher maxima elsewhere.

Unfortunately, not all graph sizes seem to reach a global
maximum within 50 generations. In particular, the small and
medium patches continue to improve past the 75-generation
mark. This is in fact an encouraging result for the algorithm,
as it shows that it is capable of gradual convergence, it
may well be that parameters could be tuned slightly more
to achieve these gains before 50 generations have passed.
However, with the current implementation, it does not
reach the maximum within the allotted 50 generation limit
imposed due to time constraints, so perhaps this is an option
that could be pursued in further work.

Examining fitnesses in terms of human perception



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 13

Tr
iv

ia
l

Sm
al

l
M

ed
iu

m
La

rg
e

Convergence plots for varied mutation probabilities and graph size

Iterations

Fit
ne

ss

10 2

10 1

100
pm = 0.05, pr = 0.02 pm = 0.1, pr = 0.03 pm = 0.3, pr = 0.1 pm = 0.5, pr = 0.15 pm = 0.8, pr = 0.25

10 2

10 1

100

10 2

10 1

100
Maximum Fitness
Average Fitness
Minimum Fitness

0 20 40

10 2

10 1

100

0 20 40 0 20 40 0 20 40 0 20 40

Maximum Global Best
Average Global Best
Minimum Global Best

Fig. 10. Convergence plots for various parameter values and graph sizes. Each individual plot is averaged over four repeats. Each column represents
a value of pm, pr as labelled at the top; each row represents a synthesiser patch complexity as labelled on the right. Horizontal bands depict the
best fitness over all 50 generations, with the minimum, average and maximum taken across the four repeats.

(based on figure 6; henceforth ‘HP’), it can be seen that the
minimum global best fitness across all 32 runs shown here is
0.007, for large patches. This reflects a HP score of between
2 and 7. However, the average global best for all graph sizes
is at least 0.03, or 7-9HP - a very strong result.

Finally, it should be noted that, while these probabilities
clearly perform well, there is significant room for further
optimisation. There may be even better-performing values
within the range 0.05 < pm < 0.3, and the ratio pm/pr also
remains untuned. While the chosen value of appromately
3 for this ratio is grounded in reason (see the second
paragraph in 4.4 for explanation), it is likely not perfect.
Unfortunately, further tuning falls outside the scope of this
research, but it is a promising avenue for any future work
on this particular system.

4.5 Convergence Results

With all values decided, the final task was to confirm the
expected outcome of evolution in the real-world test case.
With the final values pm = 0.1, pr = 0.03, np = 4, ng =
50, gmax = 30, 16 tests were run with each patch complexity.
Box and whisker plots representing the global best fitnesses
for each complexity are visible in figure 12.

Also shown in the figure is the plot from figure 6, indicat-
ing how the human perception of similarity correlates with
the MFCC fitness value. Studying the figure indicates that
all inter-quartile-ranges land above the region commonly

scored below 4/10 for similarity by users. This is the area
in which the vast majority of random patch pairings fall,
so the evolutionary algorithm is clearly making significant
progress away from random chance and towards recreating
the original sound.

It is interesting to note that there is no obvious trend
across topology complexities. The medium patches have
consistently performed the best of the three non-trivial patch
complexities with this probability choice through multiple
tests. Surprisingly, the highly complex timbres of large
patches also have performed better than the small patches,
even though these small patches typically only comprise a
single FM or additive sound. Large patches often contain
complex combinations of many FM or additive patches, so
theoretically contain more harmonic complexity. However,
many of these details may not be contributing much to
the overall timbre - it may well be that the MFCC fitness
is simply optimising for a certain kind of timbral richness
on these larger patches, rather than the specific tones being
produced by smaller topologies.



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 14

Tr
iv

ia
l

Sm
al

l
M

ed
iu

m
La

rg
e

Convergence plots for pm = 0.1, pr = 0.03, with varied graph size

Iterations

Fit
ne

ss

10 2

10 1

100

10 2

10 1

100

10 2

10 1

100

0 50 100 150 200 250

10 2

10 1

100

Fig. 11. Convergence plots for the chosen mutation probabilities pm = 0.1, pr = 0.03, shown for four different graph sizes. Each graph size was
repeated 8 times and the results were averaged in the y-direction. The format otherwise remains the same as in figure 10.

Trivial Small Medium Large
Patch Complexity

10 3

10 2

10 1

100

M
FC

C 
Fit

ne
ss

0 5 10
Perceived Similarity

Global best fitness for a range of patch complexities

Fig. 12. Box plots indicating the best fitnesses achieved for a range of
patch complexities with the final chosen settings. The plot of human-
perceived similarity (from figure 6) is shown to the right for reference.
Each box plot has a sample size of 16 repeats.

5 CONCLUSION

This paper has presented a novel approach to generating
modular synthesiser patches through interactive evolution-
ary computation. This approach has been shown to reliably
generate similar-sounding patches for synthesiser patches
of arbitrary complexity in less than three minutes, with no
local dependencies. These patches can then be easily down-

loaded in the Faust DSP format and from there compiled to
a wide range of targets - including VST plugins, Pure Data
patches and VCV Rack modules. As a result, any user with a
computer and modern browser is able to explore the sound
space of a synthesiser with no specific subject knowledge,
and more experienced users are also able to employ it as
a tool capable of integrating into a range of modern music
production and sound design workflows.

During development, testing and evaluation, typically
with the option to hear the evolution taking place enabled,
it was observed that the algorithm does indeed gradually
move towards the desired sound as one would hope. This
is particularly obvious for simpler patches which are more
recognisable, but could similarly be noticed with more
complex patches also. Playing the patches using a MIDI
keyboard also proved highly enjoyable: the ability to play
a droning chord in one context and play above it in another
was discovered early in development, and it is also possible
to continue playing on the foreground contexts while evo-
lution occurs in the background, meaning the user is able to
entertain themselves while the evolutionary process occurs.
Finally, the sounds generated both randomly and through
mutation are stimulating and often land in the attractive
area between basic patches and harsh noise, creating a
rewarding process.

The author of this research is therefore of the opinion
that the original aim stated at the beginning of this paper
has been met. However, the end product is not without



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 15

compromise, and a number of attractive future avenues in
this area will be enumerated next.

5.1 Future Work
Firstly, there is scope to develop the existing system further,
in order to bring greater flexibility and usability.

A range of compromises has been made in order to
keep the scope of this project reasonable, but future re-
search could examine the possibility of working with more
advanced synthesiser models by, for example, adding fil-
ters and noise generators to facilitate subtractive synthesis.
Components such as envelopes and LFOs have also been
ignored in this project; these could allow the user to generate
evolving sounds as well as the static timbres generated
here. Analysing patches using an offline Web Audio context
would allow these evolving patches to be evaluated faster
than real-time, alleviating the problem of needing a longer
analysis window to capture evolving sounds. The problem
mentioned in 3.3.1 of old WorkletNodes being retained in
memory also remains, and may cause performance prob-
lems or even crashing when the program is used for ex-
tended periods of time.

The evolutionary algorithm also stands to be optimised
further: while the values of pm and pr chosen here perform
well, they have not been finely tuned and are therefore not
likely to be optimal. Synthesiser topologies could also be cat-
egorised further in this analysis, in order to more accurately
examine the effect of these parameters on different kinds
of patch, and more repeats could be used to make more
precise conclusions. The characteristics of evolved patches
compared to the original patches could also be examined
further. Finally, a useful analytical technique used in previ-
ous papers ([2], [4]) would be to use spectrograms as well
as fitness plots to quantify sound similarity. Spectrograms
covering a full evolutionary session could be a powerful
method of tracking the sonic evolution of the program.

Remaining in the area of evolution, a number of other
specific changes could be made: firstly, adjusting param-
eters does not require the topology to be recompiled, so
the option of tuning the parameters before creating a new
generation of topologies may be worth exploring. Also, as
mentioned in 4.1, the MFCC fitness could be normalised to
lessen the impact of differing sound volumes on the fitness
function.

A useful evolutionary technique used elsewhere [26] is
to start with high mutation probabilities and reduce them as
generations progress, to allow wide initial explorations that
rapidly converge in order to find a local maximum. This
could be combined with options such as reintroducing the
global best as an ‘immigrant’ to the population later in the
evolutionary cycle to be optimised further if necessary.

Moving on from evolution, there are a number of inter-
face improvements that could be made to give the user even
more flexibility and feedback. For instance, the interface
currently only supports large landscape screens, and has not
been tested on mobile devices. A responsive interface would
make the tool even more accessible, though the performance
considerations of running evolution on a mobile device
would need to be evaluated.

Another issue not mentioned elsewhere is that, upon
commencing evolution of a target sound, the topology of

the chosen synthesiser is copied, and parameter values are
not retained in this process. The result of this is that, if
a user adjusts the parameters on a patch to their liking,
these adjustments will not be included in the target sound
measurement. This is currently not a trivial fix due to ar-
chitectural issues such as the parameter numbering system
mentioned below.

There is also a range of additional feedback that could
be provided to the user: for instance, they currently have
no visualisation of the sound being produced other than the
MFCC bar charts at the bottom. A spectrograph and/or os-
cilloscope visualisation showing the sound being produced
by the page could be added to the top toolbar easily, and
would give the user some visual insight into the properties
of the sounds they are hearing.

The user could also be given the option to decide the
parameters of the algorithm, such as how long to evolve
patches for. Parameters also currently have their indices set
on a global scope rather than, say, on a per-patch or per-
SynthContext basis. This proved to be a difficult problem
to solve due to choices made early in the design process,
but could be fixed with some adjustments to the synthe-
siser node constructs. This would allow the user to control
arbitrary properties over MIDI CC, as currently only the
first 127 parameters are CC-enabled before the range of
possible MIDI CC controls is exhausted. It would also stop
unreasonably high parameter indices being set in exported
patches. Finally, the option to import a sound into the
system as a Faust patch or a TypeScript structure could be
added, to enable longer-term sessions of evolution without
the need to keep a browser tab open.

6 ACKNOWLEDGEMENTS

Firstly, I would like to express my considerable gratitude
to Professor Steven Bradley, my project supervisor, whose
consistent support, interest, patience and advice were abso-
lutely invaluable in the success of this project.

Secondly, I would like to thank Stéphane Letz and
Fr0stbyteR of Grame (France’s National Centre for Musical
Creation) for creating and maintaining the faust2webaudio
module and online Faust IDE, both of which were huge
helps in developing the synthesis components of the final
product. Similarly, Macret and Pasquier’s 2014 paper on
MT-CGP served as a fantastic basis upon which to build
the evolutionary components of my implementation.

Finally, thanks to my friends for keeping me sane and
nodding appreciatively whenever I pointed at another fig-
ure that I’d spent several hours generating and/or agonising
over.



DURHAM UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE 16

REFERENCES

[1] P. Manning, Electronic & Computer Music, 2nd ed.
Oxford: Oxford University Press, 1993. [On-
line]. Available: https://global.oup.com/academic/product/
electronic-and-computer-music-9780199746392

[2] M. Macret and P. Pasquier, “Automatic design of sound
synthesizers as pure data patches using coevolutionary mixed-
typed cartesian genetic programming,” in GECCO 2014 -
Proceedings of the 2014 Genetic and Evolutionary Computation
Conference, 2014, pp. 309–316. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2576768.2598303

[3] M. Yee-King and M. Roth, “A comparison of parametric
optimisation techniques for musical instrument tone matching,”
130th Audio Engineering Society Convention 2011, vol. 2, pp.
972–979, 2011. [Online]. Available: https://www.aes.org/e-lib/
browse.cfm?elib=15885

[4] J. Shier, G. Tzanetakis, and K. McNally, “SpiegeLib: An
automatic synthesizer programming library,” in 148th Audio
Engineering Society International Convention, 2020. [Online].
Available: https://www.aes.org/e-lib/browse.cfm?elib=20794

[5] A. Horner, J. Beauchamp, and L. Haken, “Machine tongues
XVI. Genetic algorithms and their application to FM matching
synthesis,” Computer Music Journal, vol. 17, no. 4, pp. 17–29, 1993.
[Online]. Available: https://www.jstor.org/stable/3680541

[6] R. A. Garcia, “Automatic Generation of Sound Synthesis
Techniques,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2001. [Online]. Available: https://dspace.mit.edu/
handle/1721.1/61542

[7] M. Chinen and N. Osaka, “Genesynth: Noise band-based
genetic algorithm analysis/synthesis framework,” in International
Computer Music Conference 2007, Copenhagen, 2007. [Online].
Available: https://michaelchinen.com/GenesynthICMCChinen.
pdf

[8] N. Masuda and D. Saito, “Quality diversity for synthesizer
sound matching,” in The 24th International Conference on Digital
Audio Effects (DAFx20in21), Vienna, Austria, 2021, pp. 300–307.
[Online]. Available: https://www.dafx.de/paper-archive/2021/
proceedings/papers/DAFx20in21 paper 46.pdf

[9] T. Takala, J. Hahn, L. Gritz, J. Geigel, and J. W. Lee,
“Using Physically-Based Models and Genetic Algorithms for
Functional Composition of Sound Signals, Synchronized to
Animated Motion,” in Proc. Int. Computer Music Conf. (ICMC-
93), no. September, 1993, pp. 180–184. [Online]. Available:
https://apps.dtic.mil/sti/citations/ADA456431

[10] C. G. Johnson, “Exploring the sound-space of synthesis algorithms
using interactive genetic algorithms,” Interface, 1999. [Online].
Available: https://kar.kent.ac.uk/21844/

[11] B. Jónsson, A. K. Hoover, and S. Risi, “Interactively evolving
compositional sound synthesis networks,” in GECCO 2015 -
Proceedings of the 2015 Genetic and Evolutionary Computation
Conference, 2015, pp. 321–328. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2739480.2754796

[12] M. J. Yee-King, “The Use of Interactive Genetic Algorithms
in Sound Design : A Comparison Study,” ACM Computers in
Entertainment, vol. 14, no. 3, pp. 1–14, 12 2016. [Online]. Available:
https://research.gold.ac.uk/id/eprint/20164/

[13] H. Takagi, “Interactive evolutionary computation: fusion of
the capabilities of EC optimization and human evaluation,”
Proceedings of the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001. [Online].
Available: https://ieeexplore.ieee.org/document/949485

[14] O. Barkan, D. Tsiris, O. Katz, and N. Koenigstein, “InverSynth:
Deep Estimation of Synthesizer Parameter Configurations
from Audio Signals,” IEEE/ACM Transactions on Audio Speech
and Language Processing, vol. 27, no. 12, pp. 2385–2396, 12
2019. [Online]. Available: https://ieeexplore.ieee.org/document/
8854832

[15] K. Tatar, M. Macret, and P. Pasquier, “Automatic Synthesizer
Preset Generation with PresetGen,” Journal of New Music Research,
vol. 45, no. 2, pp. 124–144, 4 2016. [Online]. Available: https://
www.tandfonline.com/doi/full/10.1080/09298215.2016.1175481

[16] K. O. Stanley, “Compositional pattern producing networks:
A novel abstraction of development,” Genetic Programming
and Evolvable Machines, vol. 8, no. 2, pp. 131–162, 2007.
[Online]. Available: https://link.springer.com/article/10.1007/
s10710-007-9028-8

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Transactions on Evolutionary Computation, vol. 6,
no. 2, pp. 182–197, apr 2002. [Online]. Available: https:
//ieeexplore.ieee.org/document/996017

[18] Y. Orlarey, D. Fober, and S. Letz, “Syntactical and semantical
aspects of Faust,” pp. 623–632, sep 2004. [Online]. Available:
https://dl.acm.org/doi/10.1007/s00500-004-0388-1

[19] S. Letz, S. Denoux, Y. Orlarey, and D. Fober, “Faust audio
DSP language in the Web,” Linux Audio Conference, pp. 29–
36, 2015. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-02159002

[20] J. Fiala, N. Segal, and H. A. Rawlinson, “Meyda: an audio feature
extraction library for the Web Audio API,” in 1st Web Audio
Conference (WAC), January 2015, Paris, France., 2015. [Online].
Available: https://webaudioconf.com/ data/papers/pdf/2015/
2015 17.pdf

[21] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas,
“Improving JavaScript performance by deconstructing the type
system,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 496–507, jun
2014. [Online]. Available: https://dl.acm.org/doidoi//10.1145/
2666356.2594332

[22] K. Rupp, “Microprocessor Trend Data,” 2022. [Online]. Available:
https://github.com/karlrupp/microprocessor-trend-data

[23] U. Hiwarale, “Parallel programming in
JavaScript using Web Workers,” 2018. [On-
line]. Available: https://medium.com/jspoint/
achieving-parallelism-in-javascript-using-web-workers-8f921f2d26db

[24] MDN Authors, “Using Web Workers,” 2022. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/
Web Workers API/Using web workers#other types of worker

[25] “Worker support for BaseAudioContext · Issue #2423 ·
WebAudio/web-audio-api.” [Online]. Available: https://github.
com/WebAudio/web-audio-api/issues/2423

[26] M. Srinivas and L. M. Patnaik, “Genetic Algorithms: A Survey,”
Computer, vol. 27, no. 6, pp. 17–26, 1994. [Online]. Available:
https://ieeexplore.ieee.org/document/294849

https://global.oup.com/academic/product/electronic-and-computer-music-9780199746392
https://global.oup.com/academic/product/electronic-and-computer-music-9780199746392
https://dl.acm.org/doi/10.1145/2576768.2598303
https://dl.acm.org/doi/10.1145/2576768.2598303
https://www.aes.org/e-lib/browse.cfm?elib=15885
https://www.aes.org/e-lib/browse.cfm?elib=15885
https://www.aes.org/e-lib/browse.cfm?elib=20794
https://www.jstor.org/stable/3680541
https://dspace.mit.edu/handle/1721.1/61542
https://dspace.mit.edu/handle/1721.1/61542
https://michaelchinen.com/GenesynthICMCChinen.pdf
https://michaelchinen.com/GenesynthICMCChinen.pdf
https://www.dafx.de/paper-archive/2021/proceedings/papers/DAFx20in21_paper_46.pdf
https://www.dafx.de/paper-archive/2021/proceedings/papers/DAFx20in21_paper_46.pdf
https://apps.dtic.mil/sti/citations/ADA456431
https://kar.kent.ac.uk/21844/
https://dl.acm.org/doi/10.1145/2739480.2754796
https://dl.acm.org/doi/10.1145/2739480.2754796
https://research.gold.ac.uk/id/eprint/20164/
https://ieeexplore.ieee.org/document/949485
https://ieeexplore.ieee.org/document/8854832
https://ieeexplore.ieee.org/document/8854832
https://www.tandfonline.com/doi/full/10.1080/09298215.2016.1175481
https://www.tandfonline.com/doi/full/10.1080/09298215.2016.1175481
https://link.springer.com/article/10.1007/s10710-007-9028-8
https://link.springer.com/article/10.1007/s10710-007-9028-8
https://ieeexplore.ieee.org/document/996017
https://ieeexplore.ieee.org/document/996017
https://dl.acm.org/doi/10.1007/s00500-004-0388-1
https://hal.archives-ouvertes.fr/hal-02159002
https://hal.archives-ouvertes.fr/hal-02159002
https://webaudioconf.com/_data/papers/pdf/2015/2015_17.pdf
https://webaudioconf.com/_data/papers/pdf/2015/2015_17.pdf
https://dl.acm.org/doidoi//10.1145/2666356.2594332
https://dl.acm.org/doidoi//10.1145/2666356.2594332
https://github.com/karlrupp/microprocessor-trend-data
https://medium.com/jspoint/achieving-parallelism-in-javascript-using-web-workers-8f921f2d26db
https://medium.com/jspoint/achieving-parallelism-in-javascript-using-web-workers-8f921f2d26db
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers#other_types_of_worker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers#other_types_of_worker
https://github.com/WebAudio/web-audio-api/issues/2423
https://github.com/WebAudio/web-audio-api/issues/2423
https://ieeexplore.ieee.org/document/294849

	Introduction
	Related Work
	Search Strategy
	Previous Work
	Synthesiser Model
	Fitness Measure
	Reproduction
	Additional technologies


	Methodology
	Sound Synthesis
	Genetic Algorithms
	Generation and Mutation
	Fitness

	Performance
	Faust Compilation
	Analysis

	Interface
	Summary

	Results & Evaluation
	Fitness Testing
	Compiler Performance
	Time Optimisation
	Convergence Optimisation
	Convergence Results

	Conclusion
	Future Work

	Acknowledgements
	References

