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Abstract 
L. Wu, Wang, and Evans (2019) introduced the disruption index (DI) which has been designed to capture 

disruptiveness of individual publications based on dynamic citation networks of publications. In this study, we 

propose a statistical modelling approach to tackle open questions with the DI: (1) how to consider uncertainty in 

the calculation of DI values, (2) how to aggregate DI values for paper sets, (3) how to predict DI values using 

covariates, and (4) how to unambiguously classify papers into either disruptive or not disruptive. A Bayesian 

multilevel logistic approach is suggested that extends an approach of Figueiredo and Andrade (2019). A reanalysis 

of sample data from Bornmann and Tekles (2021) and Bittmann, Tekles, and Bornmann (2022) shows that the 

Bayesian approach is helpful in tackling the open questions. For example, the modelling approach is able to predict 

disruptive papers (milestone papers in physics) in a good way.  

 

1. Introduction 

Bibliometrics is one of the most frequently used method of research evaluation. Most users of 

bibliometrics are not aware yet that advanced metrics have been proposed, for example, to 

measure citation impact field- and time-normalized or to measure interdisciplinarity, 

internationality or novelty of research. The most recent development in bibliometrics are 

approaches to measure originality, novelty, disruptiveness, innovativeness, and similar 

characteristics of research (Winnink, Tijssen, & van Raan, 2016). L. Wu et al. (2019) introduced 

in this context the disruption index (DI) which has been designed to capture disruptiveness (and 

continuity) of individual publications based on dynamic citation networks of publications. The 

initial idea for the indicator has been proposed for patent data (Funk & Owen-Smith, 2017). L. 

Wu et al. (2019) transferred the idea to bibliometrics. The DI has experienced great popularity 

in the scientific community, since the identification of disruptiveness is highly regarded in the 

recognition system of science (L. Wu et al., 2019). In a widely recognized study, Park, Leahey, 

and Funk (2023) analyzed the DI of 45 million papers from several databases and found that 

papers are becoming less disruptive in the history of science. 

 

Although Park et al. (2023) tested the reliability and validity of the indicator, the indicator has 

not been without criticism in recent years. For example, L. Wu et al. (2019) found that the effect 

of one parameter (NR) in the DI formula (see the formula in Figure 1) is contradictory to what 

is being measured by the index (disruptiveness). Other possible limitations of the index are as 

follows: 

 

First, probabilities enter the DI calculation as statistical quantities whose measurement accuracy 

or precision in turn depends on the number of papers (e.g., by the consideration of NR in the 

formula, see Figure 1) used for the calculation. Thus, older focal papers (FPs) can be expected 

to have a higher DI precision than younger FPs (S. Wu & Wu, 2019). Older disruptive papers 

tend to have a higher number of citing papers than younger disruptive papers. The higher the 
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precision, the more robust the DI is to dynamic changes in time. Such aspects of measurement 

accuracy or standard error should be considered in the calculation of DI values. The statistical 

distribution of DI values or their basic parameters across all publications in a set provides 

important additional information that could improve the DI estimation for a focal paper. In an 

empirical Bayes estimate, two statistical estimators of the DI or the underlying probabilities 

appear. If all information for a FP is available, the DI can be estimated. If sparse data are 

available instead, the sample mean is still the best estimate for the DI. In the end, the best DI 

estimate is a weighted sum of both estimators (estimated DI and sample mean). The used weight 

is denoted as precision. If there is a large number of citing and cited papers for calculating the 

DI, its precision is high, and the estimate is largely determined by the citation information of 

the FP. However, if the precision is low, the overall mean of the sample is weighted more 

heavily. A shrinkage of the DI value toward the sample mean could happen in the case of low 

precision. 

 

Second, covariates may affect the DI value, e.g., the scientific field of the FP or its number of 

authors. We know that citations depend on many factors (Tahamtan & Bornmann, 2019). It is 

therefore interesting to determine the influence of certain covariates and to predict DI values. 

 

Third, it would be interesting not only to calculate the DI, but also to determine at the same 

time whether a FP can be denoted as disruptive or not. The DI value does not provide clear 

labels whether the FP is disruptive or not. 

 

The aim of this paper is to tackle limitations of (open questions with) the DI by using a statistical 

Bayesian approach to estimate DI values as a statistical parameter of a sample. Our approach 

extends the approach of Figueiredo and Andrade (2019). The authors proposed a Bayesian 

approach to estimate DI values for single FPs. We extend the approach for an entire sample (a 

set of publications). Our approach is illustrated with a reanalysis of publication data from 

Bornmann and Tekles (2021) and Bittmann, Tekles, and Bornmann (2022) regarding the two 

journals Physical Review Letters and Physical Review E. The data are especially interesting, 

since assessments by experts are available whether the publications in the sets can be denoted 

as landmark papers (that are disruptive in all likelihood) or not. 

 

2. Methodological Approach 

Disruptiveness of a FP is defined by L. Wu et al. (2019) as a weighted sum index DI (see Figure 

1), where “the difference between the number of papers citing the FP without citing any of its 

cited references (Ni) and the number of papers citing both the FP and at least one of its cited 

references (N1
j) is divided by the sum of Ni, N

1
j and Nk. Nk is the number of papers citing at 

least one of the FP’s cited references without citing FP itself” (Bornmann, Devarakonda, 

Tekles, & Chacko, 2020a, pp. 1244-1245). A FP can be disruptive (DI=1), developing (DI=-1) 

or neutral (DI=0).  

 

Figueiredo and Andrade (2019) developed a Bayesian model to statistically estimate DI for a 

single FP, which refers to the original DI concept suggested by Funk and Owen-Smith (2017). 

As in L. Wu et al. (2019) DI is defined as difference in proportions or probabilities (Eq. 1, 

Figure 1): 
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Figure 1. Definition of the Disruptive Index (DI) (Bornmann, Devarakonda, Tekles, & Chacko, 

2020b, p. 1150) 

 

In order for the probabilities to add up to 1.00, a third probability pk is required (pk=1-pi-pj), 

which represents the proportion of papers citing at least one of the FPs’ cited references without 

citing the FP itself (“unused”). Figueiredo and Andrade (2019, p. 3) assumed for a single FP 

that the probabilities are multinomial distributed with N = Ni + N1
j + Nk: 

 
1, , ~ ( , , , ) (2)
ji k i j kN N N Multinomial p p p N  

 

A multinomial distribution is a discrete distribution, which generalizes the binomial distribution 

to more than two categories. 

 

We now extend the approach of Figueiredo and Andrade (2019) for a sample with r=1 to R FPs. 

Data are available on Nri, Nrj, Nrk and Nr (= Nri + Nrj + Nrk) for r FPs, which are combined into 

a matrix YR*3, where Y is multinomially distributed, as follows: 

 

 

~ ( , , , ), (3)i j kMultinomialY p p p N  

 

where pi, pj, pk and N are r-dimensional vectors.  

 

We assume a Bayesian mixed-effects model (Mutz, 2022, p. 7407). The three probabilities or 

proportions can be expressed in logistic terms (Eq. 4). 
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where ηri and ηrj are random effects, which are normally distributed across R FPs with expected 

values μi0 and μj0 and standard deviations σi0 and σj0: 

 

0 0~ ( , )ri i iNormal    

0 0~ ( , )rj j jNormal    

 

The basic model can be extended by including covariates xlr and x*lr within a regression 

approach: 
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If FPs are assigned to publication sets (e.g., universities), another level can be added to the 

statistical model in sense of a two-level mixed-effects model (e.g., level 1: FPs, level 2: 

universities). This allows the estimation of DI values on aggregated levels, and comparisons on 

the aggregated level (e.g., universities) are possible.  

 

In a Bayesian approach as opposed to a frequency approach, probabilities are interpreted as 

uncertainties rather than frequencies. In the Bayesian estimation process, initial uncertainties 

(priors) about parameters are (hopefully) reduced in the light of the data (posterior estimates). 

In the absence of prior information of the parameters, the following non-informative priors are 

chosen to represent maximal uncertainty about the parameter values in advance (Eq. 6):  

 

0 , ~ (0, 10)i ik ib b Normal  =  

0 , ~ (0, 10) (6)j jk jb b Normal  =  

 

Not only the degree of disruptiveness (DIr) can be calculated for single FPs with credible 

intervals, but it is also possible to determine whether a FP is disruptive or not (DIcat, r). Thus, 

probabilities can be transformed into z-values using a probit function. If the difference of the z-

values is larger than a certain criterion (here 4), then the paper is disruptive (Eq. 6): 

 

, ( ( ) ( )) 4 (7)cat r ri rjDI probit p probit p= −   
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3. Data and Methods 

3.1. Data 

Data from Bornmann and Tekles (2021) and Bittmann et al. (2022) were re-analysed. The 

datasets include all papers published in Physical Review Letters and Physical Review E. Editors 

of both journals identified several milestone papers. In the data analyses of this study, papers 

(with the document type “article”) published between 1980 and 2002 (Physical Review Letters) 

and between 1993 and 2004 (Physical Review E) were included as FPs. The datasets consist of 

44,806 papers published in Physical Review Letters and 22,084 papers published in Physical 

Review E. 

For each paper in the sets, the necessary information for calculating the DI (see Eq. 1) was 

available. The status of papers as milestone paper or not (see Bornmann & Tekles, 2021, p. 2, 

for further information) can be used in the study to investigate whether (qualitative) judgements 

by experienced editors correspond with the results of quantitative analyses (i.e., DI values). 

 

3.2. Statistical Methods 

Bayesian models can be realized in different software applications, e.g., with the R-package 

R2WinBUGS (Sturtz, Ligges, & Gelman, 2005). We used the procedure PROC MCMC from 

SAS (SAS Institute Inc., 2018) with a Metropolis-Algorithm. To speed up the estimation 

process, the samples were divided into 20 random subsamples to estimate the DI parameters. 

 

3. Results 

In the first step of the statistical analyses, the distribution of the estimated DI values for the two 

journals were visually inspected (Figure 2, Figure 3). The estimated DI values (black curve) 

for a random sample of about 10% of all publications of each of the two journals with 95% 

credible intervals were depicted.  

 
Figure 2.  Bayesian estimated DI values (black line) for a random sample of 10% of all 

publications of Physical Review Letters with 95% credible interval (red error bar), 

sorted by increasing DI values.  
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Figure 3.  Bayesian estimated DI values (black line) for a random sample of 10% of all 

publications of Physical Review E with 95% credible interval (red error bar), sorted 

by increasing DI values. 

 

Both figures reveal the following results: 

- “Disruptive” papers (DI→1) are very rare events, and most papers are “neutral” papers 

(DI=0). L. Wu et al. (2019, p. 379) suggested to denote papers which are neither 

“disruptive” nor “developing” as “neutral”. For both journals, papers are missing that 

can be clearly identified as “developing” papers (DI→-1). Only a value of -.60 is 

reached as minimum. 

- The credible interval indicates that high uncertainty about a DI value is not necessarily 

unique to the “neutral” papers, but also occurs in “disruptive” or “developing” papers. 

- The credible intervals and thus the uncertainty about DI are slightly higher on average 

for the journal Physical Review Letters than for the journal Physical Review E. Overall, 

the sample sizes Nr (= Nri + Nrj + Nrk) are on the average lower for Physical Review 

Letters (Nmedian=1754) with higher uncertainty of DI than for Physical Review E 

(Nmedian=2452). 

 

In the second step of the statistical analyses, dichotomized calculated DIcat (DI>.90) values were 

cross-tabulated with Bayesian estimated DIcat values (see Eq. 7) (Table 1). Regarding the 

degree of agreement (calculated with Cramer`s V), there is a high but not fully perfect 

correspondence between the calculated and the estimated indicator based on the same data. For 

Physical Review Letters, the agreement is very high (Cohen`s Kappa=.98). The proportion of 

disruptive papers is higher in Physical Review Letters (2.3%) than in Physical Review E 

(0.13%). While 96.6% (1,022/1,058) of the Physical Review Letters papers that were classified 

as disruptive (according to the calculated DIcat) can be denoted as also disruptive according to 

the Bayesian estimated DIcat, the same applies to only 60.8% (28/46) of the Physical Review E 

papers. The Pearson-Bravais-correlation between the continuous versions of the DI values (that 

were calculated versus Bayesian estimations) amounts to .99 for Physical Review Letters and 

.94 for Physical Review Letters. Thus, the results reveal that the Bayesian estimations of DI 

(which takes into account both the distribution and the sample sizes of the probabilities) are 

similar but not quite identical to the calculated DIcat. 
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Table 1. Cross table of calculated DIcat with Bayesian estimated DIcat (0=non-disruptive, 

1=disruptive paper) 

Frequency Bayesian estimated DIcat (0/1) 

Column % Physical Review Letters Physical Review E 

 

 

Calculated 

DIcat 

 0 1 Total 0 1 Total 

0 43,741 
99.92% 

7 
0.68% 

43,748 
97.64% 

22,038 
99.92% 

0 
0.00% 

22,038 
99.79% 

1 36 
0.08% 

1,022 
99.32% 

1,058 
2.36% 

18 
0.08% 

28 
100% 

46 
0.21% 

Total 43,777 
97.70% 

1,029 
2.30% 

44,806 
(100%) 

22,056 
99.87% 

28 
0.13% 

22,084 
100% 

Cramer`s V .98 .78 

 

Table 2.  Proportion of detected milestone papers by the calculated DIcat in comparison to the 

Bayesian estimated DIcat. 

 Physical Review Letters Physical Review E 

 Milestone 

papers 

Number 

of 

detected 

papers 

Proportion 

of detected 

papers 

Milestone 

papers 

Number 

of 

detected 

papers 

Proportion 

of detected 

papers 

Calculated DIcat 39 2 5.13% 21 0 0% 

Bayesian 

estimated DIcat 

39 2 5.13% 21 0 0% 

 

In the third step of the statistical analyses, a logistic regression was conducted for Physical 

Review Letters to predict the milestone status of a FP from the editor (Table 2). Odds ratios for 

the disrupted papers were calculated. For calculated and estimated DI, the odds ratio deviates 

statistically significant from 1.0 (=no effect). The odds ratio for disrupted papers of 8.22 for the 

Bayesian estimated DI was higher than the odds ratio of 6.70 for the calculated DI. For Physical 

Review E, the difference was even higher: the odds ratio for the calculated DI amounted to 6.72; 

the odds ratio for the Bayesian estimated DI amounted to 17.11. As disruptiveness increases 

the odds of milestone papers occurring is more than twice as high for the Bayesian estimated 

DI than for the calculated DI in terms of a one unit change in DI. 

 

4. Discussion 

In this study, we dealt with several open questions regarding the DI. There is the danger in 

quantitative research evaluation that the DI is applied in evaluation studies without clarifying 

open questions with the indicator itself. This study was intended to target some of these 

questions, such as how to consider uncertainty in the calculation of DI values.  

 

A Bayesian multilevel logistic approach was suggested in this study to address the open 

questions. The approach considers not only the variability of DI values in the sample as 

additional information, but also the different sample sizes (e.g., Nri, Nrj) to calculate the 

probabilities. A DI value for each FP can be estimated as well as a credible interval. The credible 

interval can be used to assess the stability of the DI values over time or to compare two 

publications for “significant” differences in DI values. The approach also allows to include 

covariates.  

Our empirical results (based on the papers published in two physical journals) show that the 

Bayesian estimates of the DI values are not redundant with the DI values calculated from the 

data: we did not find perfect correlations. We also tested in this study whether DI values are 
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able to identify milestone papers in the paper sets. In terms of the categorical milestone paper 

prediction (yes or no), the Bayesian estimator did not outperform the calculated DI values. The 

Bayesian variant is superior, however, to the continuous DI values.  
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