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Capabilities of regions to create new knowledge are a major source of regional inequalities in innovation and, thus, 

economic competitiveness in the long run. Aiming to identify potentials for reducing such inequalities, we analyse 

the extent to which disparities in regional technological knowledge stocks can be explained by specific 

characteristics of regional knowledge bases. Specifically, we shift attention to characteristics recently discussed in 

the context of regional innovation capabilities, among them, indicators capturing the relatedness of the 

technological fields in which a region is active in, a region’s knowledge complexity, and the technological 

complementarity of neighbouring regions. We implement a spatial Durbin model for 430 European regions. While 

high spatial complementarity and relatedness of the region’s technological capacities are conducive to regional 

innovation, knowledge complexity exhibits a negative indirect effect. In illustrative convergence scenarios, we 

demonstrate the potential of increasing regional relatedness and complementarity values for reducing inequalities 

in Europe.  

 

1. Introduction 

The investigation of the geographical dynamics of innovation has recently attracted increasing 

interest in STI studies. Combined with considerations from economic geography, attention has 

shifted to the exploration of regional inequalities, which has also become a central issue of 

concern in the public policy debate (see, e.g., Cörvers & Mayhew, 2021; McCann, 2020). 

Regional innovation capabilities are thought to be strongly related to the underlying 

characteristics of a region’s knowledge endowments and knowledge production capacities. 

Understanding how to reduce disparities in knowledge production capacities as a basis for 

regional innovation, is therefore essential for identifying potentials to reduce interregional 

disparities in terms of economic performance and welfare (see e.g. Autant-Bernard et al., 2007). 

 

The objective of this study is (i) to identify drivers of disparities in terms of regional knowledge 

creation, and (ii) to illustrate under which conditions potentials for convergence may be 

leveraged. While the investigation of drivers of regional knowledge production is by no means 

new to the literature (see, for instance Wanzenböck & Piribauer, 2018; Wanzenböck et al., 

2020), this article shifts attention to the technological knowledge stock, and on the role of three 

determinants of knowledge creation that came into debate recently, namely, technological 

relatedness density, knowledge complexity and complementarity of technological knowledge 

bases of surrounding regions. Following Miguelez and Moreno (2018), we argue that a high 

cognitive proximity of technologies present in a region – here defined as average relatedness 

density of technologies a region is specialized in – facilitates the recombination of knowledge 

and, thus, stimulates regional innovation. Complementarity of spatially close regions, in the 

following referred to as spatial complementarity, captures technological capabilities in 

neighbouring regions that are not present in the own technological portfolio yet and related to 

these missing technologies. By considering spatial complementarity, we acknowledge that 

access to non-local capabilities, in the form of geographically bounded knowledge spillovers, 

may compensate for a lack of relevant region-internal capabilities (Balland & Boschma, 2021; 



Jaffe et al 1993; Fischer et al., 2009). Knowledge complexity indicates the ability of a region 

to create a diversified portfolio of knowledge, and at the same time export rare and specialised 

knowledge available only in a few other places (Balland et al., 2019; Pintar & Scherngell, 

2021).  

 

While these concepts have been used to describe paths of regional technological diversification 

(see e.g., Boschma et al., 2015; Balland & Rigby 2017; Balland et al., 2019), and were linked 

to economic indicators, such as employment growth and growth of gross domestic product (see 

e.g., Pintar & Scherngell, 2021; Rigby et al., 2022), their connection to a region’s overall 

technological knowledge output, and thereby their potential for reducing regional inequalities 

in innovation, is still understudied. Moreover, spatial spillover effects emanating from these 

drivers are yet neglected in empirical research. To close this gap, we employ a spatial 

econometric framework in form of a spatial Durbin model (SDM) to account for such spatial 

effects. Conceptually our empirical model is inspired by the literature stream using a 

Knowledge Production Function (KPF) framework to establish the link between inputs into the 

knowledge creation process and respective knowledge outputs. 

 

2. Method, Data & Variables 

To identify potentials for reducing regional inequalities, we initially investigate drivers of 

regional knowledge creation, employing a spatial Durbin model (SDM) inspired from a regional 

KPF framework. For a set of regions i,j = 1, … , n, the basic model is specified as: 

 
𝑦 =  𝜌𝑊𝑦 + 𝑋𝛽 + 𝛾𝑍 +  𝜓∑(𝑊 ⊙ 𝐶) +  𝑊𝑋𝜃 +  𝑊𝑍𝜆 + 𝑢 (1) 

 

with 𝑢~Ν(0, 𝜎2𝐼𝑁). 𝑦 is an n-dimensional vector reflecting technological knowledge 

production measured as the log of a region’s knowledge stock. 𝑊𝑦 is the dependent variable 

lagged in space, with 𝜌 representing the spatial dependence parameter, and 𝑊 the n-by-n row 

standardized spatial weight matrix that describes the connectivity of spatial units1. 𝑋 is the n-

by-m matrix of the main variables under consideration. ∑(𝑊 ⊙ 𝐶) is an n-dimensional vector 

capturing average complementarity of neighbouring regions, where 𝐶 is an n-by-n 

complementarity matrix, with 𝑐𝑖𝑗 reflecting the complementary capacity that region j holds for 

region i. 𝑍 captures control variables, 𝑊𝑋 and 𝑊𝑍 represent the spatial lags of explanatory and 

control variables, respectively. 

 

The analysis covers 430 regions of current EU-27 countries, as well as Norway and the UK, 

using the NUTS adapted regional classification developed by Lepori et al. (2019) 2. We use data 

spanning the period 2010-2014 for explanatory variables and 2010-2019 for the dependent 

variable3. The latter is defined as logged regional knowledge stock and calculated using patent 

data, assuming a constant yearly depreciation rate of 12%, with data spanning the years 2010-

20194. We only considered regions that produced at least 50 fractionally counted patents in 

period 2010-2014. Patent data is obtained from the OECD’s REGPAT database, also building 

the base for relatedness, knowledge complexity and complementarity indicators. For these 

 
1 We use an 8 nearest neighbour neighbourhood definition, but also controlled for robustness of the results 

estimating the model with 4-12 nearest neighbour matrixes. 
2 The classification scheme builds on Eurostat’s metropolitan regions (MR), grouping all remaining non-urban 

NUTS3 regions within the same NUTS2 region in a single region. A few NUTS3 regions with sizeable knowledge 

production (not included in the MRs) are singled out and enter on NUTS3 level.  
3 The data is aggregated to smoothen yearly variation of patent data. Using the lag of the independent variable 

reduces the risk of endogeneity. 
4 For details on the calculation of the knowledge stock variable, see Fischer et al. (2009). 



measures, we follow Pintar and Scherngell (2022) and use technological classification as 

proposed by Schmoch (2017), where International Patent Classification (IPC) classes are 

mapped onto 35 technology fields.  

 

Our three indicators of core interest are defined as follows: 

 

• To capture the effect of relatedness of a region’s knowledge base, we construct a 

relatedness density measure for each region i and technology k, closely following 

Balland et al. (2019). Relatedness density for technology k and region i is defined as the 

sum of relatedness between technology k and all technologies region i has revealed 

technological advantage (RTA)5 in, in relation to the sum of technological relatedness 

of technology k and all technologies present in the sample6. We then calculate the 

average relatedness density for all technologies present in a region. For the sake of 

brevity, we will refer to the first specification of relatedness as relatedness density  

• To proxy spatial complementarity, i.e., the extent to which neighbours of region i’s have 

RTA in technologies k that are both related to the technologies l missing in region i and 

not present in region i yet, we employ the technology specific complementarity measure 

of Balland and Boschma (2021). We calculate the complementarity value for all 

neighbouring regions for all technologies l missing in a region, i.e., technologies where 

RTA = 0, and take the average.  

• Regional knowledge complexity (KCI) is calculated following Pintar and Scherngell 

(2022). It captures both the regional breadth and depth of knowledge, as well as the 

interconnections and interactions among different knowledge domains. We define a 

regional knowledge complexity index (see Pintar & Scherngell 2022 for the formal 

definition) that relies on the diversity of a region's patent portfolio in terms of the 

technological fields the patents are applied in, and its ubiquity within a network of 

technologies recorded in patents. A region with a high KCI is therefore not only able 

produce knowledge in a diversified set of technological domains, but also in rare 

domains assumed of high value for economic exploitation in the future.  

 

In addition, we add different control variables to test the robustness of the estimates for our 

main independent variables, such as (i) logged degree centrality, reflecting R&D network 

effects, (ii) human resources, (iii) population, controlling for a region’s size, and (iv) a metro-

dummy variable, reflecting agglomeration effects. Logged degree centrality is defined as the 

logged number of a region’s network links (see Wasserman & Faust 1994) and constructed 

based on data on collaborative projects of the European Framework Programme (FP), retrieved 

from the EUPRO database, available via RISIS (risis2.eu). Data for the remaining control 

variables is drawn from Eurostat’s regional database. Human resources are proxied by the share 

of persons with tertiary education and/or employed in science and technology (HRTS)7. 

Population is defined as the logged number of inhabitants. The metro-dummy takes the value 

of 1 if a region represents a metro region according to the NUTS-adapted classification. 

Summary statistics of the variables are shown in the Appendix in Table A1.  

 
5 A region has RTA in technology k if the share of the regions knowledge production in technology k is higher 

than the share of technology k in the whole sample. To ensure that a region does not have a RTA based on a small 

number of patents, we only allow a region to have RTA in a certain field, if it has at least 5 fractionally counted 

patents in this field.   
6 Technological relatedness is calculated as a standardized measure of the number of co-occurrence of technology 

classes on the same patent, using the standardization method of Steijn (2020) and the Econ Geo R package P. A. 

Balland (2017). The results are robust to different standardization methods. 
7 HRTS data is only available on NUTS2 level and was transformed to NUTS-adapted level assuming that all 

NUTS3 regions within a NUTS2 region share the same value with respect to HRTS. 



3. Empirical Results 

Table 1 presents the impact effects of the estimated SDM.8 The first column part contains the 

direct effects of the SDM referring to the impact of a change in a certain explanatory variable 

in region i on its own logged knowledge stock. The indirect effect, given in the second column, 

captures how region i is affected by a change in the independent variable of interest in 

neighboring regions. The total effect is the sum of the direct and the indirect effect. Table A2 

in the Appendix presents the respective estimated coefficients for different specifications of our 

model. 

 

Table 1. Impact estimates of the SDM 

 

Dependent variable: Knowledge Stock (log), 2010-2019 

 Direct effects Indirect effects Total effects 

Relatedness density   0.012 *** 0.081 *** 0.093 *** 

 (0.004)^^ ^ (0.025) ^^ ^ (0.027)^^ ^ 

Spatial complementarity  0.025 *** 0.066 ***         0.090 *** 

 (0.009)^^ ^ (0.021)^^ ^ (0.030)^^ ^ 

Complexity -0.002   xc -0.061 *** -0.063 *** 

 (0.002)^^ ^ (0.014)^^ ^ (0.015)^^ ^ 

Degree centrality (log) 0.261 *** -0.266   ^ ^                       -0.005^ ^  ^ 

 (0.052)^^ ^ (0.308)^^ ^ (0.336)^^ ^ 

Human Resources (HRST) 0.042 *** 0.039     ^ 0.081 **^  

 (0.006)^^ ^ (0.032)^^ ^ (0.034)^^ ^ 

Population (log) 0.751 *** -1.137 *** -0.386^ ^^ 

 (0.064)^^ ^ (0.421)^^ ^ (0.467)^^ ^ 

Metro Region 0.159 **^  0.893^ ^^ 1.052^ ^^ 

 (0.097)^^ ^ (0.630)^^ ^ (0.757)^^ ^ 

ρ (spatial parameter)  0.757 *** °    

 (0.678)     °   

Notes: ρ is the spatial dependence coefficient (not impact estimate); Impacts are significant at the p<0.1*, 

p<0.05**, p<0.01*** level. Standard errors are shown in parentheses. Impacts are determined according to 

LeSage and Pace 2009; statistical significance is based on 1,000 simulation runs. The number of 

observations is 430. The spatial weights matrix W is constructed using 8-nearest neighbours. 

 

The results are highly interesting in the context of current debates on the drivers of regional 

knowledge production. First, as expected, we find that relatedness density is significantly 

positively associated with a region’s logged knowledge stock. This result supports the view that 

being specialized in related technologies facilitates the recombination of existing knowledge 

pieces, and thus stimulates regional technological knowledge creation. This is in line with 

previous literature (see, for example, Miguelez & Moreno, 2018, Tavassoli & Carbonara, 2014; 

Castaldi et al., 2015), despite using a different estimation method, a different operationalization 

of the relatedness measure and different geographic scope. Besides the significant and positive 

direct effect, we also find a significantly positive indirect effect, indicating that regions benefit 

 
8 Due to feedback effects from neighbouring regions, the interpretation of the estimated coefficients is not 

straightforward. Taking these feedback effects into account, we present the results of SDM model in direct, 

indirect, and total effects, as suggested by LeSage and Pace (2009). 



not only from region-internal relatedness, but also from neighbouring regions with a related 

knowledge base.9 

 

Second, the results also point to a positive effect of spatial complementarity on technological 

knowledge production. This indicates that regional innovative output benefits from extra-

regional knowledge that is complementary, and not necessarily similar to, the existing 

knowledge base, suggesting that knowledge flows from neighbouring regions that provide 

access to technological knowledge in a field not present in a region, may stimulate regional 

knowledge production, and may prevent the region from a potential lock-in situation (Balland 

& Boschma, 2021). 

 

Third, interestingly, we find a significantly negative total effect of knowledge complexity on a 

region’s knowledge stock, which is mainly driven by the negative indirect effect, i.e., the 

negative spatial spillover effects of knowledge complexity. These negative indirect effects are 

in line with the notion that complex knowledge is characterized by low accessibility, a high 

degree of tacitness and, consequently, a pronounced spatial stickiness (Pintar & Scherngell, 

2022), suggesting that regions cannot successfully tap complex knowledge sources from 

neighbouring regions, which could eventually stimulate additional innovation outcome.  

 

The ρ coefficient, indicating spatial spillovers of the dependent variable, is highly significant 

and high in magnitude. This highlights the importance of spatial proximity, confirming that the 

knowledge stock of a region is positively determined by the knowledge stocks of surrounding 

regions. This is in line with the literature (see e.g. Neuländtner & Scherngell, 2022; 

Wanzenböck & Piribauer, 2018) and suggests that there is a geographical bias in knowledge 

spillovers. The importance of neighbourhood effects and external knowledge flows is also 

highlighted by the positive effect of spatial complementarity and the indirect effect of 

relatedness density. These impact estimates further suggest that the effect of spatial knowledge 

spillovers on a region’s knowledge creation is not only determined by the size of the knowledge 

stock of surrounding regions, but also depends on the technological knowledge structure of 

these surrounding regions, i.e., the composition of knowledge fields present in the regions 

(Boschma et al., 2017). 

 

As what concerns the control variables, our estimates are expected in relation to previous work 

(see e.g. Wanzenböck & Piribauer, 2018; Autant-Bernard et al., 2007).We find positive direct 

effects for both degree centrality and human resources. The negative indirect effect associated 

with degree centrality – indicating that being located near regions that are well embedded in 

collaborative R&D links hinders, rather than stimulated, one’s own regional patenting activity 

– is counterintuitive to the idea of spatial spillovers. However, it can be explained by the 

presence of outliers, in the form of individual regions with both particularly high knowledge 

stocks and high embeddedness in the R&D network that are surrounded by regions with low 

levels of knowledge stock and a low degree centrality. As expected, we find positive and 

significant direct effects for both human resources and population. The latter serves as an 

agglomeration measure to control for the size of a region. We also find significantly positive 

direct effects for the metro region dummy variable. 

 

 
9 Note that the relatedness measure is by construction positively correlated with the overall diversification of a 

region’s knowledge space, i.e., the number of technologies the region has RTA in. To control for the possibility 

that our results are solely driven by a regions overall diversification, we estimate an additional model confirming 

that the effects are robust to the inclusion of diversification (see Appendix Table A3). 

 



4. Illustrating convergence potentials 

The empirical results described in the previous section pave the way for using these estimates 

to illustrate potentials for reducing inequalities in regional innovation capacity across Europe. 

Using the direct and indirect impact estimates of the SDM as presented in the first column of 

Table 1, we try to capture the potentials of the explanatory variables to reduce spatial 

inequalities across regions. As our results suggest that there is no positive association between 

knowledge complexity and knowledge stock, we shift our attention to the effects of relatedness 

density and spatial complementarity. To demonstrate their relevance in explaining the observed 

disparities in regional knowledge stocks, and thus to illustrate potential convergence pathways, 

we calculate the predicted regional knowledge stock per million inhabitants10, while 

synthetically increasing the values of the variables of interest in lagging regions. 

 

Figure 1 Predicted Gini Coefficient across regions in terms of knowledge stock per million if 

lagging regions close x% of their gap to highest observed value in the respective explanatory 

variable. 

 

 
 

Figure 1 illustrates the evolution of overall regional inequality – measured by the Gini index 

across regions in terms of the predicted stock of knowledge per million inhabitants – assuming 

that all lagging regions gradually increase their value in the variable of interest, until the lagging 

regions reach the highest empirically observed value of relatedness density or complementarity 

respectively or put differently, until they close 100% of the gap in the respective variable. We 

specify different groups of lagging regions; Q1 regions include all regions in the lowest quartile 

of knowledge stock per million inhabitants, Q2 regions refer to all regions above the first 

quartile but below the median, while Q1& Q2 regions include all regions below the median. 

These groups of lagging regions are shown on a map in Figure A1 in the Appendix. As implied 

by their positive impact estimates, both variables of interest yield a potential to reduce regional 

disparities. However, this potential appears to be stronger for relatedness density than for 

complementarity. For both Q2 and Q1 & Q2 regions, the decrease in the Gini coefficient starts 

to decline for the relatedness-simulation, suggesting that as the explanatory variables change, 

some formerly lagging regions overtake the non-lagging regions in terms of their population 

adjusted knowledge stock.  

 

 
10 Adjusting for population when analysing heterogeneity of regional knowledge stocks allows to control for 

differences in size. 



Figure 2 Spatial distribution of predicted regional knowledge stock per million in relation to 

the regional knowledge stock per million averaged over all observations, when Q1 and Q2 

regions close the gap to the highest observed value of spatial complementarity 

 

 
 

  



Figure 3 Spatial distribution of predicted regional knowledge stock per million in relation to 

the regional knowledge stock per million averaged over all observations, when Q1 and Q2 

regions close the gap to the highest observed value of relatedness density  

 

 
 

  



Figure 2 for spatial complementarity and Figure 3 for relatedness density, show the spatial 

distribution of the regional knowledge stock per million in relation to the average knowledge 

stock per million inhabitants across all regions11, (a) based on the observed empirical values of 

the explanatory variables, (b) after the regions have closed 30%, (c) 60% and (d) 100% of the 

gap to the highest observed value of the respective variable. Map (a) confirms that the predicted 

stock of knowledge per million, based on empirical explanatory variables, tends to be low in 

southern and eastern European regions, while central European regions – particularly regions 

in southern Germany – are characterized by predicted values of knowledge stock per million 

that are up to six times as high as the European average. When the explanatory variable of 

interest is synthetically increased step by step, lagging regions gradually catch-up with stronger 

regions. This convergence process is particularly visible in Figure 3, where we assume that 

lagging regions manage to increase the relatedness of their knowledge base; while the predicted 

regional share of the average knowledge stock per million is as low as 0.03 times the European 

average for some Polish and southern Italian regions in the baseline scenario (a), all lagging 

regions reach a knowledge stock equivalent to at least one third of the European average in 

scenario (d). 

We want to stress that the simulations only represent descriptive scenarios to explore the impact 

of the observed variables on regional inequality in terms of technological knowledge creation. 

In particular, the complementarity value, which is given externally by the location of the region, 

is nothing the region itself can change. 

 

5. Conclusion 

Local knowledge endowments are widely regarded as the fundamental basis of a region’s 

innovative capacity, and accordingly, viewed as a major source of spatial inequalities in 

innovation and, hence, economic competitiveness in the long run. While the concepts of 

knowledge complexity, technological relatedness and complementarity of external knowledge 

bases have been widely discussed conceptually (e.g., Balland & Rigby, 2017; Boschma et al., 

2015) and have recently also been studied empirically, mostly to explain regional paths of 

technological development (e.g., Balland & Boschma, 2021; Balland et al., 2019), there is still 

little understanding of how relevant they are for explaining regional disparities in terms of 

regional knowledge production. 

 

In an attempt to fill this gap, we estimated a spatial Durbin model for 430 European regions, 

investigating the effects of both region-internal and spatially lagged average technological 

relatedness density, and knowledge complexity, such as the effects of complementarity of the 

technological knowledge base of neighbouring regions. As expected, regional knowledge 

stocks are positively associated with relatedness density for the observed European regions. 

Regarding spatial spillovers, we find positive effects of spatial complementarity, i.e., 

technological complementarity of surrounding regions. In contrast, knowledge complexity 

shows a negative indirect effect, supporting the idea of its spatially sticky nature (Balland et al., 

2019; Maskell, 1999). This indicates that, even if both knowledge complexity and the overall 

volume of knowledge production are important drivers of regional economic growth (Pintar 

and Scherngell 2022), it is not necessarily the regions with the highest amount of patents that 

have capabilities in the most complex knowledge domains, pointing to different pathways for 

leveraging potentials to reduce inequalities. Lagging regions that have the capacity to diversify 

into complex technologies do not necessarily need to widen their overall knowledge base and 

volume of knowledge production in terms of patents. However, given their existing knowledge 

 
11 By construction, all regions would take a value of one if knowledge stock per million was equally distributed 

across regions. 



base, many lagging regions do not have potential to directly diversify into complex technologies 

(Balland et al., 2019).  

The estimated effects point to different convergence scenarios, i.e., potential pathways for 

lagging regions to catch-up and to strengthen their overall innovative capacity. One promising 

pathway clearly lies in the development of strategic links with regions with technologically 

complementary capabilities. An even higher potential for catching-up could be generated by a 

more targeted development of capacities in technologies related to the current knowledge base. 

A combination of both, i.e., increasing complementarity and regional-internal technological 

relatedness, generates the highest convergence potential. 

 

The positive effects of spatial complementarity but also the positive indirect effects identified 

for relatedness density, have important implications for the European Union’s Smart 

Specialization Strategy; they suggest that considering the technological capacities of 

neighbouring regions could prove beneficial in the implementation of smart specialization 

policies. 
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Appendix 

Table A1: Summary statistics  

 

 N Min Mean Median Max SD Period 

Knowledge stock (log) 430 4,15 6,48 6,49 10,47 1,22 2010-2019 

Average relatedness density 430 10,94 39,86 39,76 64,87 10,53 2010-2014 

Spatial complementarity 430 9,13 20,10 19,92 36,85 4,74 2010-2014 

Complexity 430 0,00 29,69 28,22 100,00 17,18 2010-2014 

Diversification 430 3,00 12,00 12,00 19,00 2,77 2010-2014 

Degree centrality (log) 430 0,00 5,20 5,40 6,20 0,80 2010-2014 

Human Resources (HRST) 430 15,00 31,68 32,24 51,64 6,57 2010-2014 

Population (log) 430 11,48 13,56 13,50 16,41 0,72 2010-2014 

 

Table A2: Coefficients of different model specifications 

 

 OLS SAR SDM 

Relatedness density 0.026*** 0.008**^ 0.009*** 
 (0.005)^^^ (0.003)  ^^ (0.003)^^^ 

    

Spatial complementarity 0.027**^ 0.010^^^ 0.022*** 

 (0.011)  ^^ (0.008)^^^ (0.007)  ^^ 

    

Complexity -0.019*** -0.006*** 0.001^^^ 

 (0.003)  ^^ (0.002) ^  ! (0.002) ^ ^ 

    

Degree centrality (log) 0.302*** 0.256*** 0.272*** 

 (0.070)  ^^ (0.049)  ^^ (0.045)^^^ 

    

Human Resources (HRST) 0.077*** 0.050*** 0.040*** 

  (0.008)^^^ (0.005)  ^^ (0.006)^^^ 

    

Population (log) 0.451*** 0.757*** 0.798*** 

 (0.071)^^^ (0.050) ^ ^    (0.047)^^^ 

    

Metro Region 0.231**^ 0.210*** 0.122**^ 

 (0.096)  ^^ (0.068)^^^ (0.06)^^^ 

    

SL: Relatedness density - - 0.014 * 
   (0.007) ^^^ 

    

SL: Complexity - - -0.016 *** 

   (0.004) ^^^ 

    

SL: Degree centrality (log) - - -0.273*** 

   (0.086)^^^ 

    

SL: Human Resources (HRST) - - -0.021**^ 



   (0.010)^^^ 

    

SL: Population (log) - - -0.892*** 

   (0.108)^^^ 

    

SL: Metro Region - - 0.134^^^ 

   (0.172)^^^ 

    

Constant -4.800*** -12.490*** 1.138^^^ 

 (0.956)^^^ (0.672)^^^ (1.555)^^^ 

    

ρ (spatial lag) - 0.814 *** 0.757*** 

  (0.020) ^^^ (0.039)^^^ 

R2 0.393   

Akaike Inf. Crit.  913.506 808.670 

Log Likelihood  -446.753 -388.335 
Notes: Data on explanatory variables are significant at the p < 0.1*; p < 0.05**; p < 0.01*** level. Standard errors 

are shown in parentheses. SL refers to the spatial lag of the respective variable. The number of observations for 

each model is 430. The spatial weights matrix W is constructed using 8-nearest neighbours 

 

Table A3: Impact estimates SDM 

 

 Direct Effect Indirect Effect Total Effect 

Relatedness density   0.0226*** 0.0838*^^ 0.1064**^  

 (0.006)^^^ (0.042)^^^ (0.046)^^^ 

Complementarity  0.0032^^^ 0.0092^^^ 0.0125^^^ 

 (0.011)^^^ (0.025)^^^ (0.036)^^^ 

Complexity -0.0002^^^ -0.0516*** -0.0517*** 

 (0.003)^^^ (0.015)^^^ (0.016)^^^ 

Diversification -0.0626*** 0.0547^^^ -0.008^^^ 

 (0.025)^^^ (0.177)^^^ (0.194)^^^ 

Degree centrality (log) 0.2599*** -0.3764^^^ -0.1165^^^ 

 (0.052)^^^ (0.313)^^^ (0.340)^^^ 

Human Resources (HRST) 0.0436*** 0.043^^^ 0.0865**^ 

 (0.007)^^^ (0.032)^^^ (0.034)^^^ 

Population (log) 0.7571*** -1.0632** -0.3061^^^ 

 (0.062)^^^ (0.423)^^^ (0.465)^^^ 

Metro Region 0.1751**^ 10.801^^^ 12.551^^^ 

 (0.093)^^^ (0.697)^^^ (0.772)^^^ 

ρ (spatial parameter)  0.771***   

 0.038   
Notes: ρ is the spatial dependence coefficient (not impact estimate); Impacts are significant at the p < 0.1*, p 

< 0.05**, p < 0.01*** level. Standard errors are shown in parentheses. Impacts are determined according to 

LeSage and Pace 2009; statistical significance is based on 1,000 simulation runs. The number of observations 

is 430. The spatial weights matrix W is constructed using 8-nearest neighbours. Diversification is measured 

as the number of technologies a region has RTA in. 

 

  



Figure A1: Regions in the first (Q1) and second quartile (Q2) with respect to their knowledge 

stock per million inhabitants. 
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