
The impact of knowledge complexity on total factor 

productivity in European metropolitan regions 

 

Nico Pintar* and Thomas Scherngell**  
 

*nico.pintar@ait.ac.at 

 
** thomas.scherngell@ait.ac.at 

 

 

1. Introduction 

Economic development is uneven among as well as within countries. In addition to differences 

economic development between countries - often proxied by income levels -, we also observe 

wide disparities in economic (mis)fortunes between subnational regions within countries. This 

variation is often explained by productivity differences which allow some countries (or regions) 

to prosper while others fall behind (Nelson and Winter, 1977; Prescott, 1998; Hall and Jones, 

1999) Even though these differences in productivity are driven by a large number of 

characteristics of the economy (Porter, 1990; Scott and Storper, 2003; Rodríguez-Pose, 2013; 

Rodríguez-Pose and Di Cataldo, 2015), technological progress is generally considered as the 

most essential factor for productivity gains and economic growth. 

 

While scholars of multiple fields have formulated thoughts on the role of the development and 

distribution of new technologies for (regional) economic growth for decades now (Schumpeter, 

1939; Solow, 1956; Nelson and Winter, 1982; Romer, 1990; Glaeser et al., 1992) more recent 

literature points to the ever increasing importance of new knowledge, also due to increased 

competition in times of pervasive globalisation and global value chains (see e.g. OECD, 1996; 

Foray, 2004). Despite the fact that knowledge production is seen as a key element to develop 

and sustain regional economic competitiveness, what characteristics of the region may boost 

innovative agents within the region and what the expected benefits of producing new 

knowledge are, remain much debated questions. Firms are not isolated from their environment, 

but embedded and inter-linked with their innovative activities in their regional surrounding, 

exploiting localised capabilities such as local or regional infrastructure, competing firms, 

institutions, endowments of resources, knowledge and skills (Storper, 1997; Maskell and 

Malmberg, 1999). Not only is the development of new technologies to a large degree influenced 

by regional characteristics, the diffusion of knowledge is also very much localised (Jaffe, 

Trajtenberg and Henderson, 1993), enabling firms’ and regions’ competitive advantage in 

today’s international competition. However, to complement or substitute local capabilities, 

innovative firms have in recent decades increasingly tapped external knowledge sources 

(Bathelt, Malmberg and Maskell, 2004; Breschi and Lenzi, 2015; Van der Wouden and Rigby, 

2019; Van der Wouden, 2020; Balland and Boschma, 2021) often in the form of specific R&D 

collaboration networks (Fritsch and Franke, 2004; Scherngell, 2013). 

 

The importance of knowledge production in general notwithstanding, it is clear that not all 

knowledge has the same quality or value (Foray, 2004). In an economic and 

industrial/innovation policy sense, knowledge or technologies that are harder to be imitated and 

diffused in geographical space offer more sustained competitive advantage for the innovating 

firms and regions. In this context, the concept of knowledge complexity has been developed 

recently to empirically approach the elusive notion of knowledge quality (Sorenson, Rivkin and 

Fleming, 2006; Balland and Rigby, 2017). Knowledge is of high quality if it is tacit - that is 

hardly codifiable and difficult to transfer between people and places (Polanyi, 1958, 1966; 



Kogut and Zander, 1992; Gertler, 2003). Kogut and Zander (1993) identify complexity as an 

important element of what makes knowledge tacit. Consequently, the more complex knowledge 

is, the more it is subject to individual learning and experiences that cannot easily be codified. 

As it is naturally extremely difficult or even impossible to measure tacit knowledge or the 

underlying capabilities that enable innovating actors to develop such knowledge, empirical 

operationalisations of economic or knowledge complexity typically employ indirect 

approaches. These either approximate complexity with the difficulty to combine the necessary 

components to develop a piece of knowledge or technology (Fleming and Sorenson, 2001; 

Broekel, 2019), or utilise the real-world spatial distribution of knowledge production to signal 

which types of knowledge (often proxied by patent classes) are inherently hard to produce and 

therefore valuable in a competitive sense (Hidalgo and Hausmann, 2009; Tacchella et al., 2012; 

Pugliese et al., 2019). 

 

While not without critique (e.g. Martin and Sunley, 2022; Nomaler and Verspagen, 2022), 

numerous recent studies within Economic Geography have taken up the topic of knowledge 

complexity, examined the development of regional complex knowledge over time and have 

started to analyse its effect on the regional economy in the mid to long-term (e.g. Balland and 

Rigby, 2017; Pintar and Scherngell, 2022). In addition to the academic interest on the topic, 

scholars have increasingly called for the integration of the concept into regional innovation 

policy programs, mainly but not only in the context of the EU’s smart specialisation strategy 

(S3) (Sbardella et al., 2018, 2021, 2022; Balland and Boschma, 2019; Balland et al., 2019; 

Pugliese et al., 2019; Balland, 2022; Li and Rigby, 2022; Mewes and Broekel, 2022; Rigby et 

al., 2022). 

 

Notwithstanding the potential and promise of the new approaches I introduced above under the 

heading of knowledge complexity to approximate in some sense the quality of knowledge 

produced as well as the numerous calls to implement these measures into regional innovation 

policy, I believe there is still further need to substantiate these claims. There are some studies 

within the field that are empirically studying the extent of mid- to long-term productivity effects 

of regional complex knowledge. However, these papers tackle this question mainly indirectly 

by either analysing economic growth effects of regional specialisation into more complex 

knowledge and technology fields in general (Mewes and Broekel, 2022; Pintar and Scherngell, 

2022) or by studying the growth effects of explicitly adopting a Balland et al. (2019) -type smart 

specialisation strategy that takes into account the complexity and relatedness of knowledge or 

technology fields targeted by inventors within a region (Li and Rigby, 2022; Rigby et al., 2022). 

Few studies have so far attempted to directly analyse the differential positive productivity effect 

of complex knowledge production (Antonelli, Crespi and Quatraro, 2022) that is theoretically 

expected and would further legitimate the academic and policy interest in the topic of 

knowledge complexity.  

 

On the other hand, there is an extensive empirical literature that presents evidence on the link 

between knowledge capital or more general knowledge production and productivity. Particular 

relevant works on this topic study this relationship at the firm (Griliches and Mairesse, 1984; 

Griliches, 1986; Mairesse and Sassenou, 1991; Raymond et al., 2015), industry (Scherer, 1982; 

Griliches and Lichtenberg, 1984; Pakes and Schankerman, 1984), country (Coe and Helpman, 

1995; Park, 1995; Coe, Helpman and Hoffmaister, 2009), or regional level (Döring and 

Schnellenbach, 2006; Fischer, Scherngell and Reismann, 2009; Antonelli, 2011; Scherngell, 

Borowiecki and Hu, 2014; Wanzenböck, 2017). The more recent studies draw on the rapidly 

growing empirical nexus of data to proxy knowledge production, such as patents and patent 

citations, publications or joint R&D projects. In general, these studies provide statistical 



evidence on the relationship between knowledge production and productivity. However, this 

research inherently assumes – by means of the model specifications and variables used – that 

all knowledge has the same value, i.e. the quality of knowledge is neglected. In this paper we 

aim to remedy this by relating the regional production of complex knowledge to advances of a 

regional total factor productivity (TFP) index. 

 

2. Theoretical framework and model 

In order to explore the link between regional knowledge complexity and TFP, we adopt a spatial 

econometric modelling approach. Conceptually, the modelling approach is inspired by the 

extended regional knowledge capital model (KCM) that relates region-internal and regional-

external knowledge to regional total factor productivity (Fischer, Scherngell and Reismann, 

2009; LeSage and Fischer, 2012; Scherngell, Borowiecki and Hu, 2014). This extended version 

of the famous knowledge capital model (Griliches, 1979), includes knowledge spillovers in 

addition to internal knowledge capital in the production function.  

 

Following the theoretical derivation in Scherngell et al. (2014), the extended regional 

knowledge capital model leads to an expression of regional output in the form of: 

 

𝑄𝑖𝑡 = 𝐿𝑖𝑡
𝛼 𝐶𝑖𝑡

1−𝛼𝐾𝑖𝑡
𝛽1𝐾𝑖𝑡

∗ 𝛽2 (1) 

 

Here, Q refers to regional output, L to labour input, C to capital input, K to region-internal and 

K* to region-external knowledge. Alpha is the output elasticity with respect to labour and 

capital input. The indices i and t refer to region and time, respectively. As we believe that the 

quality of knowledge or knowledge complexity a region also needs to be taken into account, 

we further extend this model by including region internal and region external knowledge 

complexity.  

 

𝑄𝑖𝑡 = 𝐿𝑖𝑡
𝛼 𝐶𝑖𝑡

1−𝛼𝐾𝑖𝑡
𝛽1𝐾𝑖𝑡

∗ 𝛽2𝐶𝐾𝑖𝑡
𝛽3𝐶𝐾𝑖𝑡

∗ 𝛽4 (2) 

 

As total factor productivity (TFP) is defined as output over conventional inputs (labour and 

capital), equation 2 leads to: 

 

𝑃𝑖𝑡 = 𝐾𝑖𝑡
𝛽1𝐾𝑖𝑡

∗ 𝛽2𝐶𝐾𝑖𝑡
𝛽3𝐶𝐾𝑖𝑡

∗ 𝛽4 (3) 

 

This relates region internal and external knowledge capital as well as complex knowledge 

capital to regional total factor productivity. Taking the log form of this expression gives 

 

𝑝 = 𝛽1𝑘 + 𝛽2𝑊𝑘 + 𝛽3𝑐𝑘 + 𝛽4𝑊𝑐𝑘 (4) 

 

where lower case letters refer to logged (natural) variables. Here, region and time indices are 

dropped for visual convenience. This equation already gives us a starting point for our empirical 

modelling exercise to tease out whether knowledge capital and interestingly complex 

knowledge capital can be shown to be positively associated with regional TFP development. 

Because subnational regions are highly integrated into their environment in their economic but 

also knowledge creation activities (as mentioned above), we suspect that estimating a regional 

model according to equation 4 would suffer from omitted variable bias. This is likely the case 

as the spatial interconnectedness of regions is not well captured by the model. Following related 

literature (Elhorst, 2014a; Scherngell, Borowiecki and Hu, 2014) Scherngell et al (2014) we 

thus include the spatial lag of the dependent variable (TFP) to yield as spatial durbin model 

(SDM) of the form: 



 

𝑝 = 𝜌𝑊𝑝 +  𝛽1𝑘 + 𝛽2𝑊𝑘 + 𝛽3𝑐𝑘 + 𝛽4𝑊𝑐𝑘 (5) 

 

Following convention, rho refers to the coefficient of the spatial autoregressive process between 

neighbouring regions. Note that in this model, regional total factor productivity might be 

influenced by neighbouring productivity. The spatial weight matrix W defines the assumed 

neighbourhood structure of our model. We use the inverse of the bilateral distance between 

regions as the spatial weight. This means that two regions are assumed to be more connected if 

they are closer to each other. For details about the estimation and interpretation of a spatial 

durbin model, please refer to (LeSage and Pace, 2009; Elhorst, 2014b).  

 

3. Data 

In line with existing literature, we use patent data to proxy regional knowledge production. 

Specifically, we retrieve patent applications to the European Patent Office (EPO) by inventors 

located in the EU and EFTA countries, starting from 2000 to 2017 from the OECD REGPAT 

database (see Maraut et al., 2008) which matches patents to NUTS-3 regions by inventor 

residence. We map patents located in these NUTS-3 regions to metropolitan regions as defined 

by EUROSTAT1 and remove (fractional) patents that are located in peripheral regions with 

very few patents. See Pintar and Scherngell (2022) for details. These metropolitan regions 

represent more realistically functional economic regions. Metropolitan regions are 

combinations of NUTS-3 regions which are aggregated in a way to more realistically represent 

urban regions and to ideally come close to functional regions of cities, including commuter 

belts around a city. 

 

Knowledge capital (k) is then defined as the five year sum of past regional patent applications. 

To account for the complexity of regional knowledge capital, we weight knowledge capital with 

the regional knowledge complexity index. To make this analysis comparable to related 

literature, we opt for using a popular measure of knowledge complexity, based on the Hidalgo 

and Hausmann economic complexity index (Hidalgo and Hausmann, 2009)2.  

 

We define the regional total factor productivity index (p) as in Caves et al. (1982).  

 

𝑝𝑖𝑡 = (𝑞𝑖𝑡 − �̅�𝑡) − 𝑠(𝑙𝑖𝑡 − 𝑙�̅�) − (1 − 𝑠)(𝑐𝑖𝑡 − 𝑐�̅�) (5) 

 

Again, lower case letters refer to variables in logged form and an upper bar refers to yearly 

average values. Here, lower case s is the assumed share of labour costs in the production 

process. Similar to related studies (e.g. Beugelsdijk, Klasing and Milionis, 2018), we set s equal 

to 2/3. Regional output (q) is measured via real regional gross value added. Labour input (l) is 

the number of employees, adjusted by differences in the average working hours per country. 

The capital stock of a region is defined as the five year sum of past real gross fixed capital 

formation (investment). All non-patent variables described above are sourced from ARDECO3.  

 
1 See https://ec.europa.eu/eurostat/web/metropolitan-regions/background. 
2 Specifically, we use the knowledge complexity used in (Balland et al., 2019; Pintar and Essletzbichler, 2022; 

Pintar and Scherngell, 2022).  
3 ARDECO stands for Annual Regional Database of the European Commission’s Directorate General for 

Regional and Urban Policy. See https://knowledge4policy.ec.europa.eu/territorial/ardeco-database_en. As we 

need to relate TFP to various knowledge capital, we need to translate economic variables also to the European 

metropolitan regions. GVA data and employment already comes in NUTS 3 data, so this can be easily 

aggregated to the needed spatial scale. Gross fixed capital formation (investment) is only available at the NUTS 

2 level. Using NUTS 3 population data, we distribute investment data to NUTS 3 regions and then aggregate to 

the needed metropolitan regions. 

https://ec.europa.eu/eurostat/web/metropolitan-regions/background
https://knowledge4policy.ec.europa.eu/territorial/ardeco-database_en


 

4. Preliminary results 

Following theoretical arguments mentioned in the introduction and the unnumerable number of 

quantitative studies on this subject, knowledge capital is shown to increase total factor 

productivity. However, most studies focus on explaining the relation between knowledge 

production and the level of TFP. To potentially substantiate claims of the recently popular 

literature on knowledge complexity and calls to integrate the focus on complex knowledge into 

regional innovation policies, we focus on the effect of knowledge capital and complex 

knowledge capital on the growth of TFP. Table 1 presents preliminary results of our modelling 

exercise. Here, models 1 to 3 refer to a simple linear model according to equation 4. As can be 

seen, this model is robust in the sense that the inclusion of only knowledge capital or complex 

knowledge capital or the combination of both leads to the same overall conclusion. Contrary to 

first belief, we find a negative association of the regional knowledge stock but to a higher extent 

the neighbouring knowledge capital on TFP growth.  
Table 1: Estimation results 

 
 

While surprising at first, a negative size effect on growth is very common, for example in the 

growth and convergence literature (e.g. Piribauer and Crespo Cuaresma, 2016). Interestingly, 

the spillover effect is even higher in magnitude, possible indicating a competition effect 

between regions. Investigating the remaining spatial dependence in the residuals (via a Moran’s 

I test) of model 3, confirmed out suspicions that a proper spatial modelling approach is needed. 

Models 4 to 6 refer to the spatial durbin model as in equation 5. First, we find that the spatial 

lag is positive and highly significant, indicating that the regional TFP development is highly 

dependent on the geographical position of the region. Again, we find negative associations of 

knowledge capital on TFP growth. However, while the region internal complex knowledge 

Dep. variable: 5 year tfp growth

(1) (2) (3) (4) (5) (6)

ln k -0.0197 * -0.0229 ** -0.0265 *** -0.0279 ***

(0.008) (0.008) (0.007) (0.008)

W*ln k -0.4197 *** -0.3755 *** -0.3285 *** -0.3015 ***

(0.040) (0.040) (0.038) (0.039)

ln ck -0.0007 -0.0014 -0.0013 -0.0014

(0.001) (0.001) (0.001) (0.001)

W*ln ck 0.1073 *** 0.0858 *** 0.0775 *** 0.0644 ***

(0.014) (0.014) (0.013) (0.013)

spatial lag 0.7639 *** 0.7802 *** 0.7231 ***

(0.040) (0.040) (0.045)

no. regions 160 160 160 160 160 160

no. periods 13 13 13 13 13 13

Observations 2080 2080 2080 2080 2080 2080

twoway fixed effects yes yes yes yes yes yes

R
2

0.056 0.032 0.075

Log. Likelihood 3498.331 3477.222 3511.447

OLS ML

Notes: The dependent variable is the five year difference of the tfp index as defined in the text. ln k and ln ck refer to 

the logged (natural) five year stock in knowledge and complex knowledge. The spatial weight matrix (W) is used to 

create spatially lagged version of the two variables of interest to account for (complex)  knowledge spillovers. Model 

(4) to (6) are spatial durbin models (SDM) where "spatial lag" is the coefficient associated with the spatial lag of the 

dependent variable. Coefficients are statistically significant at the *p<0.05; **p<0.01; ***p<0.001 level.



stock seems to be unrelated with TFP growth, we find that a region might benefit from being 

located near regions that are able to produce highly complex knowledge.  

 

5. Conclusion and limitations 

In this paper we investigated whether knowledge capital and especially complex knowledge 

capital can be shown to be associated with future TFP growth. We adopted an extended regional 

KCM approach based on Scherngell et al. (2014) and introduced the concept of knowledge 

complexity to complement conventional measures of knowledge production. While this work 

is preliminary, we can identify that complex knowledge capital seems to show a different – and 

more favourable – relation with regional future TFP growth.  

 

In this work we were limited by the data available. Especially the patent data used is somewhat 

outdated. In future work we will investigate the possibility to make more recent patent that 

usable in this framework. Moreover, we aim to improve the modelling approach by using 

different neighbourhood definitions and include a sweep of robustness tests. 
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