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Abstract:

Microscopic simulation is an established tool in traffic engineering and r esearch, where aggregated t raffic performance measures 
are inferred from the simulation of individual agents. Additionally, measures describing the safety and efficiency o f r oad user 
interactions gain importance for recent developments such as automated vehicles and urban cycling. However, current simulation 
frameworks model interactions including cyclists only with limited realism. To address this issue, we propose to bring bicycle 
dynamics to traffic s imulation. We demonstrate that a  novel reformulation of the social force framework can create input signals 
for a controlled inverted pendulum bicycle model and thereby enable a fully two-dimensional open space simulation of cyclist 
interactions. The inverted pendulum model introduces the need to stabilize the bicycle as a constraint to the reactive behavior 
of simulated cyclists. Furthermore, it enables the simulation of countersteering and weaving for stabilization. Our cyclist social 
forces have anisotropic force fields with respect to relative interaction position and orientation to describe the varying interaction 
constellations in open space. With these models, we simulate five single- and multi-cyclist test cases and show that the generated 
trajectories notably differ from results obtained from a 2D bicycle model without lean angle simulation. Measurements of the 
maximum lateral path deviation and post-encroachment time show that these differences are relevant for typical applications. Our 
work demonstrates the potential of introducing physics-based realistic bicycle dynamics to the microscopic simulation of individual 
road user interactions and the fundamental capability of our reformulated cyclist social forces to do so. Going further, we plan to 
calibrate and validate our model based on naturalistic cycling data to support the initial results of this work.
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Introduction

In traffic engineering and research, microscopic traffic simulation is a widespread tool to assess the impact of innovations in traffic
control, road infrastructure, connectivity, automation, and other fields. Researchers and practitioners measure performance indicators
for traffic efficiency and safety from the movements of individually simulated road users. Historically designed for cars, microscopic
simulations use lane-based architectures, where lateral motion is limited to placement on the lane without considering vehicle
dynamics. With this architecture, simulation environments struggle to accurately describe cyclists and their diverse motion patterns.
Compared to cars, cyclists show less lane discipline and utilize legal and illegal options for the available infrastructure.

Previously, researchers have investigated several approaches to capture cycling behavior into models suitable for microscopic simu-
lation. Kaths et al. (2021) and Kurtc and Treiber (2020) evaluate the adaptation of car-following models to bicycle behavior. While
this successfully models some aggregated longitudinal characteristics, it does not capture the two-dimensional motion encountered
in intersections and other open spaces. Popular approaches to enable two-dimensional motion are cyclist adaptions of the pedestrian
social force model (Helbing and Molnár, 1995). In this paradigm, imaginary forces describe a person’s motivation to act. Attractive
forces draw road users to their intended destination while repulsive forces prevent collisions with their environment. To capture the
constraints of two-wheeler motion, researchers separate the social force acting on a cyclist into lateral and longitudinal components
(Twaddle, 2017). Other researchers improve the cycling characteristics by adding path-planning modules (Rinke et al., 2017) oor
anisotropic characteristics to the repulsive force fields of other road users (Yuan et al., 2019; Dias et al., 2018). Lastly, researchers
add complex tactical layers to the social force model that explicitly model different behaviors and preferences depending on a cy-
clist’s surroundings (Ni et al., 2023; Liang et al., 2018; Rinke et al., 2017). While all these innovations improve the capabilities of
the social force model to simulate bicycling, we have not found work that introduces the physical constraints of riding a two-wheeled
bicycle into the framework.

The inclusion of two-wheeler vehicle dynamics must consider two effects. Firstly, cyclists cannot accelerate laterally without
longitudinal motion and corresponding steering input. Direct lateral acceleration, however, is possible with the particle dynamics
used in the original pedestrian social force models. For cars, Huang et al. (2012) use the social force as input to a simple vehicle
dynamics model to prevent unrealistic lateral acceleration. A similar application to bicycles is currently still missing. Secondly,
cyclists do not only steer to reach a destination but simultaneously need to stabilize the bicycle. This constraint limits the set
of feasible reactions without falling and thus impacts how cyclists react to their environment. A relevant effect, for example, is
oscillating for stabilization. After disturbance or at low speeds, cyclist trajectories show later motions resulting from pedaling
frequencies and the need to stabilize the bike. Another effect is countersteering, which requires cyclists to momentarily steer in the
opposite direction of an intended turn to initiate an inward roll angle.

With an increasing demand to simulate qualities of individual road user interactions like safety, specifically for cyclists and new
forms of mobility like automated vehicles, more realistic road user models gain importance. This warrants the introduction of
physics-based bicycle dynamics into the social force framework. We hypothesize that such a model adds dynamic effects to the
microscopic simulation of cyclist events that help to accurately describe safety-critical road user interactions. In an ongoing project,
we are developing a cyclist social force model with realistic bicycle dynamics to validate this hypothesis. The present paper presents
our first results of a reformulated social force coupled with controlled vehicle dynamic models. We use an inverted pendulum
bicycle model, which enables us to simulate the countersteering effect, stabilizing oscillation, and minimum stable speeds. Similarly
to Dias et al. (2018), we introduce a new version of anisotropic repulsive force fields depending on the relative position and relative
orientation between cyclists. Additionally, we propose spline-based trajectory planning to calculate the destination force. Without
loss of generality, we limit the scope of this paper to bicycle-bicycle interactions and do not yet consider repulsive forces from
infrastructure boundaries. For a complete model, these components may be added in the future. We demonstrate the qualitative
functionality of our approach with four different generic scenarios and discuss apparent benefits and shortcomings. Promising
results pave the way for further development and full validation of a cyclist social force model that creates realistic safety-sensitive
microscopic road user interactions.

The remainder of the paper is structured as follows. First, we introduce our method, consisting of the dynamic bicycle model, the
cyclist social force model, and the control architecture. Then, we show the results of applying our model to four exemplary scenarios.
Finally, we discuss the results regarding benefits and shortcomings.
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Method

To introduce realistic bicycle physics into the microscopic simulation, we add a bicycle dynamics model to the social force model.
Figure 1 shows an overview of the proposed simulation system architecture. Two separate models for speed and yaw have the force
angle and force magnitude respectively as input and the updated bicycle state as output. The following subsections explain the
building blocks of this architecture in detail.

Cyclist Social Forces Bicycle Dynamics

Opponent 1

Opponent nFoV Filter

FoV Filter

Repulsive Forces

Destination Force

Path Planning

Σ

∠ Yaw and Lean Control

∥ · ∥ Speed Control

v ψF

ψ,
θ

x,
y,
v

Desired
Destinations

Opponent
Locations

Figure 1. System overview of a cyclist with n opponents, experiencing the aggregated social forces F and controlling their speed
v and yaw angle ψ accordingly. This also results in an update of the bike’s position x, y and roll angle θ.

Dynamic Bicycle Model

We choose the inverted pendulum bicycle model (Karnopp, 2013, ch. 7) as a simple model to describe the essential effects of bicycle
dynamics. Figure 2 shows a drawing of the model. Each wheel is modeled as a point in the ground plane that is constrained to
prevent relative lateral motion. The front wheel rotates about the vertical axis for steering. The bicycle and rider are modeled as
an inverted compound pendulum that can roll about the line connecting the rear and front wheel points. At a constant longitudinal
speed v, steering leads to lateral acceleration which can be used to stabilize the pendulum.

𝑣 δ

θ

𝑥

𝑦

ψ
z

l1
l2

h

Figure 2. The inverted pendulum bicycle model.

As shown in Karnoop (Karnopp, 2013, ch. 7), the transfer function relating the steer angle δ and the roll angle θ is

Gθ(s) =
Θ(s)

∆(s)
−K

τ2s+ 1

τ21 s
2 − 1

, (1)

with τ21 =
Ib +mh2

mgh
, τ2 =

l2
v

and K =
v2

g(l1 + l2)
, where Ib is the central roll moment of inertia of the bike and rider, m is

the combined mass of rider and bike and g is the gravitational constant. We modify Karnopp’s model by giving some inertia and
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damping, capturing the non-instantaneous nature of steering and human neuromuscular dynamics. The following transfer function
describes dampened steering with the steering torque T (s) as input.

Gδ(s) =
∆(s)

T (s)
=

1

Iss2 + cs
. (2)

Here, Is denotes the moment of inertia of the steer system and c the damping coefficient of the rotational motion. Gδ(s) is derived
from the net torque equilibrium of the rotating steer column. The final yaw angle may be calculated from

Gψ(s) =
Ψ(s)

∆(s)
=

1

τ3s
, (3)

derived from the geometric relationship while using a small angle approximation for δ and τ3 = v
l1+l2

(Moore, 2015).

Cyclist Social Forces

The original pedestrian model describes particles that can be accelerated in any direction. A superposition of repulsive and attractive
psychosocial forces exerted on the individual by their intentions and environment acts as the driving force (Helbing and Molnár,
1995):

Fa = F 0
a +

∑
b

Fa,b +
∑
B

Fa,B +
∑
i

Fa,i (4)

Here Fa = dv
dt is the social force experienced by a simulated pedestrian a. F 0

a is a social force that pulls a towards their intended
destination. Fa,b are repulsive social forces between the individual a and other road users b, which prevents them from approaching
each other closely. Fa,B are repulsive forces of delimiting infrastructure and Fa,i are attractive forces between persons that lead to
group formation or draw people towards points of interest. For the scope of this publication, we only consider the destination force
and repulsive forces of other road users. It is straightforward to add the other forces in future developments.

The definition of the social force as an acceleration is suitable for particles that can be accelerated in all directions. The movement of
a bicycle however is laterally constrained by its two-wheeler characteristics and the necessity to steer to achieve lateral acceleration.
The social force can’t move the bicycle directly. We therefore propose a reformulation of the social force that describes the intended
velocity vector va rather than an acceleration. This may then be used as input for our controlled dynamic bicycle model.

Fa := va (5)

As a result, the social force is now a velocity vector field. This weakens the original analogy with Newtonian forces. However,
when used as the input of a controlled dynamic system, it retains its interpretability as the motivation to act, i.e. the desired quantity
that the control system follows. To keep this reference to its origin, we choose to retain the name social force. Zhao et al. (2023)
have previously successfully applied similar velocity force fields as cost functions for the simulation of car interactions with optimal
control.

Destination Force

Helbing and Molnár (1995) designed the destination force to point in the direction that corrects an agent’s movement from its
current velocity vector to the preferred velocity vector. Huang et al. (2012), use the same approach for their social force model for
cars. This introduces a feedback loop into the social force model that controls the agent to move in the direction of the desired
destination. More complex dynamic models however may require dedicated tune-able controllers to be stabilized and follow a
desired trajectory. We therefore propose to reformulate the destination force. To be used as an input for the controlled dynamic
model, the destination force should directly point toward where the agent wants to go. This may either be a vector pointing straight
towards a desired location or a vector following the direction of a desired path. But, if the destination force directly points towards
the desired destination, discontinuities may occur when the bicycle has reached a destination and the force vector jumps to the next
destination. These jumps can lead to instability of the dynamic model. Instead, we calculate the destination force based on a smooth
spline that connects multiple intermediate locations. Let p0

1 ... p0
i be a series of i consecutive intermediate destinations ahead of the

cyclist and pat the position of a cyclist a at time t. Then, ps
1 ... ps

j are j points of a B-spline γ(t) through pat−µ,p
a
t ,p

0
1 ... p0

i . µ is
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a small multiple of the sampling time to include a previous location form the bike’s trajectory, smoothing the spline with respect to
the bike’s current orientation. i is the number of forward intermediate destinations that are included in the spline. The destination
force then points in the direction

eF0 =
ps
1+ν − ps

1

∥ps
1+ν − ps

1∥
, (6)

where ν describes a look-ahead offset to compensate for the delay introduced by the dynamic bicycle model. While going straight,
the magnitude of the destination force is given by the velocity vd that the cyclist desires to ride. For turns, we derive ∥F 0∥ from the
curvature of the spline ahead of the cyclist, given as (Pressley, 2010, p. 31)

κ =
∥γ̈ × γ̇∥
∥γ̇∥

=
|γ̇xγ̈y − γ̇yγ̈x|√

γ̇2x + γ̇2y
3 , (7)

where γ(t) = (γx(t), γy(t), 0)
T is the spline in the xy-plane and a dot denotes the derivative d

dt . Interpreting the curvature as the
inverse of the turn radius R = 1

κ , we may then use the following relationship given by Karnopp (2013, p.152) to determine the
radius of a turn at a constant speed and lean angle:

R =
v2

gθ∞
. (8)

The above expression is derived from the steady state lean angle θ∞ at a constant steer angle and the geometric relationship between
steer angle and turn radius. Assuming that riders unconsciously choose a maximum comfortable lean angle θc = θ∞ for their
maneuvers, this gives the ideal speed for a turn of radius R. It serves as a turn-dependent upper limit to the destination force
given by the preferred cycling speed vd. Additionally, we introduce a lower speed limit vs that prevents the destination force from
suggesting unstable speeds for small turn radii. The final expression of the destination force magnitude is:

∥F 0∥ = v(κ) =


vs if

√
g θcκ < vs

vd if
√
g θcκ > vd√

g θcκ otherwise

. (9)

Repulsive Forces

In the social force model, repulsive forces prevent road users from approaching each other closely. Generally, the magnitude of
these forces describes how strong an opponent reacts while the direction of the repulsive force describes the direction of any evasive
maneuver. For a pair of cyclists, these realistic reactions depend on their relative position and relative orientation. For example,
two cyclists going parallel to each other might be comfortable with a small lateral clearance that only requires minor evasive action,
whereas encroaching maneuvers might require strong breaking and steering to prevent collisions. We directly tailor repulsive force
fields Frep,a,b = Frep,a,b · erep,a,b to represent this anisotropy of cyclist interactions. For convenience, the relative position of two
cyclists a and b is expressed in polar coordinates (ra,b, φa,b) centered at a’s position. ψa,b is their relative heading. Similar to
Helbing and Molnár, we base the contour lines of our force field on ellipses described by

ra,b(φa,b) =
β√

1− (e(ψ) cosφa,b)
, (10)

where β is the semi-minor axis of the ellipse and e(ψ) is an anisotropic eccentricity. Additionally, we introduce an anisotropic radial
decay σ(φa,b, ψa,b). The magnitude of repulsive force then becomes

Frep,a,b(ra,b, φa,b) = F0 exp

(
− β

σ(φa,b, ψa,b)

)
= F0 exp

(
−
ra,b
√
1− (e(ψa,b) cosφa,b)

σ(φa,b, ψa,b)

)
. (11)

The direction of the repulsive force is perpendicular to the contour lines and hence equals the direction of the negative gradient:

erep,a,b = − ∇Frep(ra,b, φa,b)

∥∇Frep(ra,b, φa,b)∥
(12)
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We introduce the two anisotropic properties to enable passing with small lateral clearances for parallel interactions and early braking
for perpendicular interactions. In the first case, the contour lines of the force field have to be elongated in the direction of travel of
a cyclist and narrow perpendicular to this direction. In the second case, the contour lines must approach a circular shape and have
a low radial decay to ensure early reaction. In both cases, the area in front of the cyclists must have strong repulsive forces with a
small radial decay to prevent collisions. The area behind the cyclists may have large radial decay to allow others to follow closely.
To achieve these properties, we modulate the eccentricity and decay as follows:

e(ψa,b) = e0 − e1 sin
2 ψa,b (13)

σ(φa,b, ψa,b) = σ0 + σ1 sin
2 ψa,b + (σ2 + σ3 sin

2 ψa,b)
∣∣∣sin φa,b

2

∣∣∣ (14)

This introduces the tune-able parameters 0 < e1 < e0 < 1 and σ0, ..., σ3 > 0 and creates the almond-shaped force fields shown for
different relative orientations between two cyclists a and b in Figure 3. We chose these modulation functions heuristically to create
force fields with the properties described above. Hence, they are not unique and there is no guarantee that the performance achieved
with these functions is optimal.

−5 0 5 10 15
−5.0

−2.5

0.0

2.5

5.0

Parallell interactions
ψa,b = 0, ψa,b = ±π

−5 0 5 10 15

45 ° interactions
ψa,b = ±1

4
π, ψa,b = ±3

4
π

−5 0 5 10 15
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2
π
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2
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xa,b [m]

y
a
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]

Figure 3. Repulsive force fields of a cyclist a located at (0, 0) for different relative orientations ψa,b and positions (xa,b, ya,b)

of a cyclist b. Colors indicate the magnitude of the force field as multiples of the desired velocity vd of b. The red line marks
where the repulsive force equals the maximum magnitude of b’s destination force. The repulsive force direction experienced by b
is perpendicular to the contour lines and indicated by black arrows.

Control Architecture

To make a simulated cyclist a execute the movement indicated by the overall social force Fa, we introduce two separate control loops
for speed and yaw (see Figure 1). The first system controls the speed v based on social force magnitude vd = ∥Fa∥ experienced by
a. The second system controls the yaw angle ψ based on the desired yaw derived from the social force angle ψd = ∠Fa.

Roll and Yaw Angle Control

When riding a bicycle, humans try to reach their destination while also having to keep the bicycle stable. We describe this effort with
a nested control loop for the roll angle θ and yaw angle (Figure 4). Firstly, a PI controller derives the desired roll angle from the yaw
error. The desired roll angle is the input for the inner loop, which consists of a D-controller that derives the torque at the handlebar,
the steer column dynamics Gδ(s) and the roll dynamics Gθ(s). Note, that ideal D-characteristics are not realizable for physical
systems. However, in our simulation scenario, the transfer function of the inner loop still retains a higher degree denominator than
numerator and hence is realizable as a whole. One may also interpret the inner loop as the combined human lean control dynamics
and implement this for simulation. The inner loop transfer function with respect to the roll angle θ is

Ginner,θ(s) =
Θ(s)

Θd(s)
=

GR2(s)Gδ(s)Gθ(s)

1 +GR2(s)Gδ(s)Gθ(s)
=

−KKDτ2s−KKD

Iτ21 s
3 + cτ1s2 − (I +KKDτ2)s− (c+KKD)

. (15)
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Gθ
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θd δτ
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GR1
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GR2
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Figure 4. roll and yaw angle control.

Using the Routh–Hurwitz stability criterion, three conditions for the stability of the inner loop can be derived:

(I) KD < − I

Kτ2
= − Igl

l1v2
(II) KD < − c

K
= −cgl

v2
(III) v <

cl1
I

(16)

For a realistic rotational moment of inertia of the steering column I < 1, realistic steering dampening c ≫ 1 and bike dimensions
l1 ≈ 1 and realistic speed, (II) is dominated by (I) and (III) is always satisfied. The inverse dependency on the bicycle speed means
that no bounded gain KD will be able to stabilize the bicycle at all speeds. For very small speeds, the average cyclist has to step off
the bike to prevent falling. This minimum speed for stability can be tuned by choosing a suitable KD. We create an adaptive KD(v)
that enables stability at low speeds while preventing unreasonably large controller outputs at higher speeds. With

KD(v) =
kd0

v + kd1
, (17)

instability occurs for vmin <
−cgl−

√
(cgl)2−4cglk0k1

2k0
. Figure shows a plot of Eq. 16.III and 17 for k0 = −600, k1 = 1 and typical

bicycle parameters (Moore, 2015).

0 2 4 6 8 10

v
[
m
s

]
−1000

−500

0

K
D

(I) (II) KD(v)

vmin ≈ 0.98
m

s

Figure 5. Stability limits of the inner loop for the gain KD(v).

The outer loop takes the steer angle from the inner loop and passes it to the yaw angle forward dynamics Gψ(s):

Gouter(s) =
Ψ(s)

Ψd(s)
=

GR1(s)Ginner,δ(s)Gψ(s)

1 +GR1(s)Ginner,δ(s)Gψ(s)
=

b2s
3 + b3s

2 + b4s+ b5
a0s5 + a1s4 + a2s3 + a3s2 + a4s+ a5

. (18)

with Ginner,δ(s) =
∆(s)
Θd(s)

=
Ginner,θ

Gθ(s)
and the parameters:

a0 = Iτ21 τ3

a1 = cτ21 τ3

a2 = (KPKDτ
2
1 − (I +KKDτ2)τ3)

a3 = (KIKDτ
2
1 − (c+KKD)τ3)

a4 = −KPKD

a5 = −KIKD (19)

b2 = KPKDτ
2
1 b3 = KIKDτ

2
1 b4 = −KPKD b5 = −KIKD (20)

Again, we evaluate the Routh–Hurwitz stability criterion to find limits for the gain parameters:
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(I) KP > 0

(II) KP <
Iτ3 +KKDτ2τ3

τ21KD

(III) KI > 0

(IV) KI <
cτ3 +KKDτ3

τ21KD

(V) Kp < − I

gcτ21
v +

I

c
KI +

Il2
τ41 g

(21)

Figure 6 visualizes the stability constraints of the outer loop for the bicycle and KD(v) as chosen above. We define an adaptive
gain KI(v) with inverse speed dependency to ensure that the minimum stable speed does not increase while keeping the integrative
characteristics small to prevent oscillations. The proportional gain KP may be constant without implications for stability.

KI(v) = ki0

(
1− vmin

v

)
(22)

0 2 4 6 8 10

v
[
m
s

]
−2

−1

0

1

2

K
I

(IV)

(III)

KI(v)

vmin ≈ 0.98
m

s

0 2 4 6 8 10

v
[
m
s

]
0.0

0.2

0.4

K
P

(I)

(V)

KP (v)

vmin ≈ 0.98
m

s

Figure 6. Stability limits of the outer loop for the gains KP (v) and KI(v) with ki0 = 0.2.

Speed

For simplification, the inverted pendulum bicycle model assumes constant speed. However, simulated cyclists need to adapt their
speed according to the magnitude of experienced social force. Hence, we introduce a second independent control loop for the speed.
This loop (Figure 7) consists of a P-Controller to derive an acceleration from the current speed error and an integrator to model
the bicycle speed. The resulting longitudinal speed variations violate the above-mentioned assumption of constant speed. However,
for sufficiently small simulation time steps and accelerations, the speed variations per step are small as well and may be neglected.
Furthermore, Limebeer and Sharma (2008) have previously determined that the lateral bicycle dynamics are only little affected
by small longitudinal accelerations. This further justifies treating our model as time-invariant. Empirically, we have not observed
instability of the roll and yaw angle control due to speed variation.

v

vd v
a

− −
GR3

P
1
s

Figure 7. Speed control.

Simulation Results

To demonstrate the cyclist simulation with reformulated social forces and bicycle dynamics we implement the model in Python
3.11 (Python Software Foundation, Beaverton, USA) using the Python Control Systems Library (Fuller et al., 2021) and perform
a series of tests. First, we present the step response of a single cyclist. Then we show simulations of multiple cyclist interactions.
We compare the results for the inverted pendulum bicycle model and a 2D bicycle model, that consists only of a two-dimensional
two-wheeler model in the ground plane without consideration of the roll angle (Corke, 2017, p. 101). In a simple control loop, a
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P-controller aligns the steering angle with the desired yaw angle. Other than that, the 2D bicycle model shares the embedding of the
inverted pendulum model into the cyclist social force model, including spline-based destination forces and repulsive force fields.

We choose the parameters for our bicycle model, such as dimensions, mass, and inertia, from related work (Moore, 2015) to
represent a standard bicycle. The parameters for steer column dynamics are tuned heuristically to produce the expected outcome.
The resulting values for Is and c are in the same order of magnitude as provided by other researchers for real bicycles (Doria and
Melo, 2018). Similarly, we heuristically calibrate the cyclist social force parameters so that the simulation shows the expected
effects. A calibration based on naturalistic driving data was not possible due to the unavailability of suitable data at the current time.

In the first experiment, we apply a step in the desired yaw angle to a cyclist traveling at constant speed. To get an undisturbed view
of the yaw and roll dynamics, we disable path planning and adaptive speed for this scenario. Figure 8 shows the trajectories of an
inverted pendulum and a stable bicycle in the left column and the corresponding yaw, steer and roll angles over time on the right.
The step of the desired yaw angle to the left leads to a steep rise of steer angle in the opposite direction to initiate the turn. Steering
to the right makes the inverted pendulum cyclist (blue) fall left into the intended turn. With the roll angle in the right direction,
the controller then quickly steers to the left to perform a left turn. This showcases the countersteering effect that is necessary to
control a bicycle. An enlarged part of the trajectory plot focuses on the moment when the yaw angle step is applied to visualize
the countersteering effect. The inverted pendulum cyclist notably swerves to the right whereas the 2D cyclist directly steers left.
This leads to a bend of approximately 22 cm (see inset of Figure 8). The maneuver also results in a delay between the desired and
actual change of direction, which the inverted pendulum bike only slowly recovers from. At its maximum, it laterally diverts 2.44 m
from the desired trajectory. The oscillations of the yaw angle also show how the inverted pendulum cyclist has to use lateral motion
to stabilize the bike while trying to execute the desired maneuver. The stable bicycle (red) on the other hand is able to follow the
sudden change in direction faster, without a swerve in the other direction and with a smaller lateral offset.
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Figure 8. Yaw angle step response at constant speed. Comparison between the inverted pendulum bicycle dynamics (blue) and 2D
bicycle dynamics (red). The left column shows the simulated trajectories with the reaction to a sudden change of the desired yaw
angle. The right column shows the simulated bicycle states over time.

In a second experiment, we create four different scenarios for our simulated cyclists. This time, the whole pipeline explained above
is active, including path planning for destination force calculation and adaptive speeds. The model parameters are identical to the
first experiment and throughout all four scenarios of the second experiment. The left column of Figure 9 shows a snapshot of the
simulation with one or more inverted pendulum cyclists. It visualizes the cyclists’ trajectories up to that moment, the planned path,
the social forces acting on the cyclist at that moment, and any intermediate destinations of the cyclist. The right column presents
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the final trajectories of the inverted pendulum bike (blue) and the stable bike (red) after the simulation is finished. In the parcours
scenario, a single cyclist has to travel to a series of destinations with lateral offset to demonstrate the agility of the cyclist. Both cyclist
models execute the curves given by the intermediate destinations. Similar to the step response experiment, the inverted pendulum
cyclist however is lagging behind due to the delay introduced by the need to steer into the fall. Note, that, in our simulation, the
cyclists don’t have to fully reach an intermediate destination. After a cyclist has approached a destination closer than the distance
dmin = 2m, they switch to the next.
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Figure 9. Test scenarios of the cyclist social force model with bicycle dynamics. The left shows simulation snapshots of inverted
pendulum bikes during interaction. Arrows indicate the individual social forces experienced by the cyclist (gray) and the resulting
force (dark blue). The right compares trajectories of inverted pendulum bikes (blue) and 2D bikes (red) at the end of the simulation.

The other three scenarios show simple interactions of multiple cyclists to demonstrate the general capability of our model to han-
dle common interactions. In the "passing" and "overtaking" scenarios two interactions are shown. The cyclists evade each other
smoothly and only little differences in the trajectories of the stable and inverted pendulum bikes are seen at the beginning of each
maneuver. Again, countersteering causes a small delay in the reaction of the inverted pendulum cyclists, but the effect is little be-
cause the desired course correction is only very minor. In the second half of the maneuvers, the two model variants differ more. In
the absence of any repulsive forces after the cyclists have passed each other, the path-planning-based destination force is the only
influencing factor. Re-planning the path to the destination in every time step amplifies the small lag of the inverted pendulum bicycle
compared to the stable bicycle. The turn back on track becomes unrealistically wide and delayed. The fourth scenario shows an
encroachment of three cyclists. In an evasive maneuver, the two cyclists traveling upwards slightly swerve to the right, while the
single cyclist traveling right decelerates and performs a stronger evasive maneuver. Again, the inverted pendulum bikes show a small
lag in their trajectory and small decaying oscillations after the initial evasive movement. Additionally, Figure 10 shows the lateral
deviation of cyclist a from the undisturbed straight horizontal trajectory that they were tasked with for both models. The evasive
maneuver of the inverted pendulum cyclist (blue) results in more than a 1 m bend to the right, whereas the 2D cyclist (red) requires
about 40 cm less lateral space. This puts into numbers how the additional need to stabilize the bike affects the space requirements.
Lastly, we report the Post-Encroachment Time (PET), which measures the time between the first bicycle leaving and the second
bicycle entering the conflict area and is a surrogate safety indicator designed to assess the safety of road user interactions (Allen
et al., 1978). Table 1 shows a difference of more than 11% between the two models for the interaction of a and b. This shows that
the inverted pendulum model notably affects typical performance measures used in traffic simulation and assessment.
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Table 1. Post Encroachment Times (PET) in the encroaching scenario of Figure 9 for both model types.

bike models PET between a and b PET between a and c
inv. pendulum 1.83 s 0.96 s

2D model 1.64 s 0.93 s
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Figure 10. Deviation of cyclist a in the encroaching scenario from it’s undisturbed path.

Discussion

The test scenarios show the general capability of the social force reformulation and the inverted pendulum model to describe cyclist
interactions. Compared to existing microscopic frameworks, this enables lane-free simulation of road user interactions. Addition-
ally, the simulated trajectories of our model exhibit the intended effects of countersteering and lateral oscillation for stabilization.
Compared to the 2D model without lean angle, these effects affect the relative positions, orientations, and speeds of interacting
cyclists. The PET measurements for the encroaching scenario demonstrate that this can result in notable differences of typical
performance indicators and hence might lead to a different assessment of an interaction. Furthermore, we observe that the need to
stabilize the bicycle leads to an increase in space requirements. For example, a countersteering bend of 22 cm corresponds to 9.6 %
of the width of a unidirectional Dutch bicycle path (Veroude et al., 2022). Similarly, the lateral path deviation difference between
the inverted pendulum model and the 2D model is 41 cm or 17.8 % of the width of a Dutch bicycle lane (Veroude et al., 2022).
These measurements show that the stabilization task impacts the way cyclists react to disturbances in a way relevant to simulation
applications like infrastructure design and road safety assessment. Qualitatively, the underlying physics back the behavior of our
model. Quantitatively, choosing the parameters of our model heuristically without calibration based on real-world data limits the
interpretability of the magnitude of the observed effects. While we plan to perform proper calibration and validation in the next steps
of our project, the presented simulations seem realistic. For example, the step response leads to a countersteering motion of about
two meters in length at a speed of 5 m

s which equates to a countersteering duration of 0.4 s. Therefore, these first results strengthen
our hypothesis that more realistic bicycle dynamics are significant for the microscopic simulation of bicycle interactions.

Shortcomings of the model are apparent in the unrealistic course corrections after the interaction in the scenarios "Overtaking" and
"Passing". This effect is created by our spline-based path planning and more advanced path planners or predictive control may solve
the issue. Other shortcomings relate to missing functionalities of a full interaction model. These are, for example, coming to a halt
at a specific location or identifying a crash from large roll angles. For the first case, the model already supplies a minimum speed at
which the bicycle becomes unstable. However, simulating the transition between riding and a safe and accurate stop is yet unsolved.

Conclusion

In this work, we present how physics-based bicycle dynamics may influence the microscopic simulation of cyclists. Firstly, our
cyclists are constrained by the degrees of freedom available to a two-wheeler. Secondly, we add the simulation of the roll angle to the
bicycle, which introduces countersteering and lateral oscillation for stabilization. In a comparison of simulated bicycle trajectories
with and without roll angle, this notably impacts the simulated maneuvers in terms of lateral deviation and post-encroachment time
and hence may affect an assessment of interactions on a microscopic level and the aggregated performances on a macroscopic level.

To enable the coupling between the social force model and a bicycle dynamics model, we present a reformulation of the social force
model. This interprets the social force as a desired velocity rather than an acceleration. The desired velocity vector then becomes
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the input of our controlled bicycle model. A new spline-based destination force pointing directly along the desired path decouples
the social force model and the control of the bicycle dynamics. Additionally, we tailor anisotropic force fields to describe the largely
anisotropic characteristics of bicycle traffic. We heuristically arrive at these design choices motivated by the creation of a model
that showcases the known real-world effects described above. Going further, we plan to calibrate and validate our model based on
real-world data to confirm the hypothesis that realistic bicycle dynamics are an important element of simulated interactions.
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