2310.01152v2 [cs.CR] 16 Oct 2023

arxXiv

Large Language Model-Powered Smart Contract
Vulnerability Detection: New Perspectives

Sihao Hu, Tiansheng Huang, Fatih ilhan, Selim Furkan Tekin, Ling Liu
School of Computer Science
Georgia Institute of Technology
Atlanta, GA 30332, United States
{sihaohu, thuang, filhan, stekin6, ling.liu} @ gatech.edu

Abstract—This paper provides a systematic analysis of the
opportunities, challenges, and potential solutions of harnessing
Large Language Models (LLMs) such as GPT-4 to dig out
vulnerabilities within smart contracts based on our ongoing
research. For the task of smart contract vulnerability detection,
achieving practical usability hinges on identifying as many true
vulnerabilities as possible while minimizing the number of false
positives. Nonetheless, our empirical study reveals contradictory
yet interesting findings: generating more answers with higher
randomness largely boosts the likelihood of producing a correct
answer but inevitably leads to a higher number of false positives.
To mitigate this tension, we propose an adversarial framework
dubbed GPTLENS that breaks the conventional one-stage detec-
tion into two synergistic stages — generation and discrimination,
for progressive detection and refinement, wherein the LLM plays
dual roles, i.e., AUDITOR and CRITIC, respectively. The goal of
AUDITOR is to yield a broad spectrum of vulnerabilities with the
hope of encompassing the correct answer, whereas the goal of
CRITIC that evaluates the validity of identified vulnerabilities is
to minimize the number of false positives. Experimental results
and illustrative examples demonstrate that AUDITOR and CRITIC
work together harmoniously to yield pronounced improvements
over the conventional one-stage detection. GPTLENS is intuitive,
strategic, and entirely LLM-driven without relying on specialist
expertise in smart contracts, showcasing its methodical generality
and potential to detect a broad spectrum of vulnerabilities. Our
code is available at: https://github.com/git-disl/GPTLens.

Index Terms—Large language model, GPT, smart contract,
vulnerability detection

I. INTRODUCTION

Smart contracts, commonly associated with cryptocurrency
transactions on blockchains, were racked with financial losses
up to billions of dollars due to vulnerability exploitation [59].
Due to the immutable nature once smart contracts are de-
ployed, auditing acts an essential role in their development.
Recently, generative Large Language Models [5], [26], [58]
(LLMs) are rapidly emerging and reshaping the domain of
software engineering [15], facilitating tasks of code gener-
ation [9], code understanding [46], and code repair [28].
Leveraging the capabilities of LLMs to empower smart con-
tract auditing presents a promising application opportunity.
In this paper, we envision the development of LLM-powered
smart contract vulnerability detection techniques from a new
perspective, in tandem with a systematic analysis of the
opportunities and challenges involved in this nascent research
topic.

Compared to the existing representative analysis tools [3],
[4], [11], [19], [24], [44] developed in the past years, LLM-
powered detection features some unparalleled advantages:

(1) Generality: Existing tools like Slither [11] require ex-
pert knowledge to design fixed-pattern detectors based on
control-flow or data-flow, restricting them to specific types
of vulnerabilities [48]. In contrast, LLMs can emulate human
linguistic understanding and reasoning and describe any type
of vulnerability using natural language, allowing them to
potentially detect a wider range of vulnerabilities, including
those that are unknown or uncategorized a priori.

(2) Interpretability: Generative LLMs can be utilized not
only to detect vulnerabilities but also to offer intermediate
reasoning about the detected vulnerabilities by following the
chain-of-thought [47]. For programming and software engi-
neering tasks, LLMs can provide insights into code under-
standing [46] and even suggest code repair solutions [28].
Such capabilities, if exploited intelligently, hold the potential
to grant a heightened level of transparency and trustworthiness
to the vulnerability detection process.

Nevertheless, certain limitations hinder LLMs from being
exploited to their full potential:

(1) LLMs can produce a large number of false positives [10],
resulting in a low precision and necessitate exhausting manual
verification efforts. These false positive cases, categorized as
factual errors or potential vulnerabilities, suggesting that they
should be differentiated from the true vulnerabilities in terms
of metrics beyond just correctness.

(2) LLMs, if used in a naive manner, tend to fail to uncover
all vulnerabilities within the smart contract, leading to false
negatives. These undetected vulnerabilities can be categorized
into two primary groups: First, hard cases that exceed the
“cognitive ability” of current LLMs; Second, vulnerabilities
that are detectable but were missed because of the randomness
of the generation. For the latter, our empirical study shows that
instead of generating deterministic answers in one-shot, gener-
ating multiple answers with higher randomness (diversity) can
largely boost the likelihood of the true answer being generated.
Nevertheless, this strategy presents a Catch-22 dilemma [14]
as it inevitably introduces more false positives, i.e., the goal
of detecting more true vulnerabilities is misaligned with the
goal of reducing false positives.

To mitigate this tension, we propose GPTLENS, a frame-

https://github.com/git-disl/GPTLens

work that separates the conventional one-stage detection into
two adversarial yet synergistic stages: generation followed by
discrimination.

The primary goal of the generation stage is to enhance the
likelihood of true vulnerabilities being identified (generated).
With this goal in mind, we ask an LLM to play the role of
multiple auditor agents, and each auditor generates answers
(vulnerability and the reasoning) with high randomness, even
though it could lead to a plethora of incorrect answers. In
contrast, the goal of the discrimination stage is to discriminate
between true and false answers generated in the generation
stage. To realize this, we prompt the LLM to play the role of
a critic agent, which evaluates each identified vulnerability on
a set of criteria, such as correctness, severity, and profitability,
and assigns corresponding scores. Subsequently, GPTLENS
ranks the answers by these scores to select the top-k results.

The primary advantage of GPTLENS is that it resolves
the Catch-22 dilemma present in one-stage detection, i.e.,
the conflicting goals between increasing the probability of
generating the correct answer and reducing the number of
false positives. Furthermore, GPTLENS is a pure LLM-driven
framework without resorting to any expert knowledge during
the end-to-end vulnerability detection process.

We conduct preliminary experiments on 13 real-world smart
contracts, all of which were reported to contain vulnerabil-
ities in the Common Vulnerabilities and Exposures (CVEs)
database [45]. Experiments indicate that compared to the
conventional one-stage detection which identifies true vulnera-
bilities in 38.5% of contracts with the top-1 output, GPTLENS
succeeds in 76.9% of contracts. When comparing at the trial
level, the accuracy for top-1 results rises from 33.3% to 59.0%.
This enhancement is exciting as GPTLENS is simple and does
not rely on any intricate design, suggesting its potential for
broader application scenarios.

In summary, this paper makes three original contributions:

e We provide a systematic analysis of the advantages
(opportunities) and challenges of LLM-powered smart
contract vulnerability detection techniques.

e We introduce an innovative framework, GPTLENS, con-
stituted by two adversarial yet synergistic stages wherein
the LLM takes on the roles of the auditor and critic agents
respectively.

o GPTLENS is simple, effective and purely LLM-driven,
eliminating the need for specialist expertise and showing
the potential for generalization across a range of vulner-
ability types.

II. LLM-POWERED VULNERABILITY DETECTION
A. Standard Detection Paradigms

There are three standard prompting paradigms for vulnera-
bility detection, i.e., binary prompting, multi-class prompting
and open-ended prompting.

Existing works primarily follow the binary prompting
paradigm [10], [40]. In this paradigm, LLMs are prompted
with the smart contract code and a specific vulnerability

Binary prompt: You are a smart contract auditor. Review
the following smart contract code in detail. Is the contract
vulnerable to {vul_type}? Reply with YES or NO only.
{contract code}

type [48], such as integer overflow/underflow, re-entrancy,
or access control risk, and is expected to produce a binary
YES or NO answer. These studies [10], [40] also recommend
including the definition or additional information about the
vulnerability type to enhance performance. Given n categories
of vulnerabilities, the LLM service should be queried n times
for each smart contract.

e 1
Multi-class prompt: You are a smart contract auditor.
Here are {n} vulnerabilities: {vul_typel, vul_type2, ...,
vul_typen}. Review the following smart contract code in
detail. Use O or 1 to indicate the presence of specific types
of vulnerabilities, such as {vul_typel: 0, vul_type2: 1, ...,
vul_typen: 0}. {contract code}

- J

An extension of binary prompting is multi-class prompt-
ing [8], which requires LLMs to categorize identified vul-
nerabilities into multiple classes. Both binary and multi-class
prompting fall under the category of close-ended prompting, as
they necessitate that the vulnerability categories be predefined.
Nevertheless, there always exist vulnerabilities that are either
unknown or not categorized: Zhang et al. [57] found that 80%
of exploitable bugs remain undetected by existing analysis
tools.

Open-ended prompt: You are a smart contract auditor.
Review the following smart contract code in detail and
identify vulnerabilities within it. {contract code}

In this paper, we propose a new prompting paradigm dubbed
open-ended prompting, which prompts LLMs to identify any
potential vulnerabilities they think might be, and describe them
in natural language without being constrained by predefined
vulnerability names, theoretically enabling LLMs to recognize
a broader range of vulnerability types.

B. Advantages of LLM-powered Detection

Interpretability: Beyond merely identifying vulnerabilities,
we can ask LLMs to produce explanations for code, generate
intermediate reasoning for vulnerability detection, generate
examples of how to exploit identified vulnerabilities, and
suggest code repair solutions. Such interpretability offers a
new degree of transparency and trustworthiness, as we can gain
insight into the step-by-step thought process [47] of LLMs. A
case study in Listing 3 presents the explanations provided by
GPT-4 for identified vulnerabilities.

Generality: Traditional smart contract auditing tools

[11],

(41,
[19], [24], [44] have difficulty detecting unknown or

uncategorized vulnerabilities since detectors are predesigned
by human experts for fixed patterns of specific vulnerability
types.

Existing Al-powered detection methods [17], [32], [60] also
feature limited generality because they work in a supervised
classification manner: vulnerabilities are classified into a fixed
set of predefined categories based on known threats, which are
used as the ground-truth to train a detection model.

For LLM-powered detection, although close-ended prompt-
ing also requires vulnerabilities to be predefined, open-ended
prompting breaks this constraint. To retain the characteristic
of generality, we adopt open-ended prompting throughout the
paper. In our experiments, when prompting GPT-4 [26] with
an open-ended prompt, it identifies “condition logic error” for
CVE 2018-11411 and “incorrect constructor name” for CVE
2019-15079, which are semantically precise and fall outside
of existing popular categorizations [48].

Efficiency: LLM services provide efficient online inference,
making LLM-powered methods output results much faster than
many traditional methods [8]. However, pre-training an LLM
offline is prohibitively expensive in terms of both computa-
tional resources and time [43].

C. Limitations of Current LLM-powered Detection
Although LLM-powered detection offers promising advan-

tages and despite the growing hype and claims regarding

what LLMs can do, our empirical study has exposed some

detection demonstrates that GPT-4 can only identify 32 out of
73 vulnerabilities on 52 DeFi attacks, but produces 740 false
positive cases, leading to an extremely low precision of 4.15%
(Precision = %). A similar conclusion can be drawn
from the results of Claude [2], which achieves a precision of
4.3%. Another measurement study [8] shows that GPT-3.5 and
GPT-4 achieve precisions of 19.7% and 22.6% respectively, in
detecting the 9 most common categories of vulnerabilities.

In practice, we observe that false positives can primarily be
broken down into two cases:

o Factual error: LLMs are insensitive to certain types of
syntactic details, such as modifier statements, condition
statements, error handling statements (require, assert,
revert), and event statements, especially when the number
of input tokens is huge. For example, in Listing 1, GPT-4
flags the multiTransfer function for re-entrancy risk be-
cause it believes “the function does not follow the Check-
Effects-Interaction pattern, e.g., the state should not be
updated before calling external contracts.” Nonetheless,
this false alarm stems from mistaking Transfer as an ex-
ternal function call when it is actually an event statement
for data logging without invoking external contracts.

limitations inherent in current LLMs, which inhibit them from s

reaching their full potential in practice. Below, we discuss two
primary limitations.

function multiTransfer (address/|]
uint [] _amounts) public returns
success) {
require (_addresses.length <= 100 &&

_addresses,
(bool

_addresses.length == _amounts.length);
uint totalAmount;
for (uint a = 0; a < _amounts.length; a++)

totalAmount += _amounts([al];
require (totalAmount > 0 && balances[msg.
sender] >= totalAmount);
balances[msg.sender] —-= totalAmount;

for (uint b = 0; b < _addresses.length; b
++) |
if (_amounts([b] > 0) {

balances[_addresses[b]] +=
_amounts[b];
Transfer (msg.sender,

1, _amounts[bl);

_addresses[b

}
}

return true;

14 balanceOf [owner] =

Listing 1. Code snippet from the smart contract reported in CVE 2018-13836

1) Large number of false positives: The paramount chal-
lenge is that LLMs can produce a large number of false posi-
tives (FP), leading to exhausting manual verification efforts. A
recent measurement study [10] on project-level vulnerability

i function setOwner (address _owner) returns (
bool success) {
owner = _owner;
return true;
o}
s function uploadBalances (address|[] addresses,
uint256[] balances) onlyOwner ({
require (!balancesLocked) ;
8 require (addresses.length == balances.
length);
9 uint256 sum;
10 for (uint256 i = 0; i < uint256 (addresses.
length); i++) {
11 sum = safeAdd(sum, safeSub (balances[i],

balanceOf [addresses[i]]));
balanceOf [addresses[i]] = balances[i];
}
safeSub (balanceOf [owner
1,

sum) ;

Listing 2. Code snippet from the smart contract reported in CVE 2018-10666

e Potential vulnerability: In another case, the identified risk
does exist but remains unexploited, possibly because it is
neither severe enough nor financially beneficial for attack-
ers. In Listing 2, GPT-4 highlights two vulnerabilities:
the “lack of access control” in the setOwner function,
which allows anyone to call it, and the “arbitrary balance
manipulation” in the uploadBalances function, enabling
the owner to set balances for any addresses arbitrarily,
which could inflate the token supply. Despite both of them
are correct vulnerabilities, only the former was exploited
by the attacker and labeled as a CVE while the latter is
considered as a false positive, since the formor is more

severe and profitable. This observation indicates that vul-
nerability detection should consider not only correctness
but also severity and profitability. Vulnerabilities detected
in a smart contract should be ranked taking into account
all these aspects.

While a recent effort [40] seeks to mitigate the impact of
false positives by utilizing sophisticated rules for filtering,
designing such rules demands expert knowledge and remains
effective only for predefined vulnerability types.

2) Large number of false negatives: LLMs fail to detect a
large portion of true vulnerabilities, resulting in a low recall
(Recall = TPTJF%). As demonstrated in [10], GPT-4 and
Claude-1.3 achieve recalls of 43.8% and 35.6% respectively
on 52 DeFi attacks. In our experiments, we observe that false
negatives can also be divided into two categories:

e Hard cases that are beyond the cognitive capabilities of
current LLMs. It is reasonable to assume that certain
vulnerabilities surpass the detection abilities of existing
LLMs, including intricate logic issues that might elude
even human auditors. To detect these hard cases, we
expect more powerful LLMs in the future or more com-
plicated designs, which will be discussed in Section V.

« Vulnerabilities that are detectable but undetected due to
the randomness of generation. As is known, GPT-like
LLMs generate text by repeatedly estimating probability
distributions for next positions across the vocabulary
and sampling token-by-token [1]. During generation, a
hyper-parameter ¢ (temperature) controls the sharpness of
the distribution [6]. Low randomness leads the LLM to
generate more credible results, which outperforms than
high randomness when the number of generated samples
is small. However, even though high randomness leads to
less credible results, it is more likely to generate a correct
answer when the times of generation is huge. This obser-
vation cannot only be corroborated by our experiments
(Section IV), but also by the Codex paper [9]: Figure 1
shows the pass probability of the best result picked out
of k samples generated by Codex [9] (a sibling of GPT-
3) on a code generation task (HumanEval). When the
number of samples reaches 100, a higher temperature
(0.8) outperforms a low temperature (0.2) with a huge
margin (13 absolute percentage).

Nevertheless, pass@Fk in Figure 1 is calculated utilizing
an oracle (ground-truth knowledge), which is not available in
real-world applications and generating more diverse answers
inevitably leads to more false positives. Hence, how to identify
more correct vulnerabilities without introducing more false
positives is a challenge for LLM-powered detection.

III. TWO-STAGE ADVERSARIAL DETECTION FRAMEWORK

Goal: Our goal is to present a simple, effective, and entirely
LLM-driven methodology to shed light on the design of
LLM-powered approaches. For every identified vulnerability,
it should indicate the associated function and provide the
reasoning.

Pass@K vs K, Temperature

049

034 —

Pass@k

0.1 4

T T UL | T
10° 10! 102

Number of samples (k)
Fig. 1. Pass@k against the number of samples (k) w.r.t. various temperatures
reported in the Codex paper [9]. Pass@k is the probability of the best result
out of k generated samples, where the best sample is picked by an oracle
(ground-truth knowledge). Higher the temperature ¢, higher the randomness

of samples. When t = 0 the LLM generates deterministic results. higher
temperatures are better when the number of samples is large.

Motivations: The design of GPTLENS is inspired by our
previous analyses, summarized as follows:

(1) Open-ended prompting has good generalization across a
wide range of vulnerabilities, including those unknown
or uncategorized ones.

(2) Reducing false positives is crucial for practical appli-
cations. False positives should be assessed not only for
correctness but also for severity and profitability.

(3) Generating a larger set of diverse samples can raise
the likelihood of generating the correct answer, but it
inevitably leads to more false positives.

The objective of identifying more correct vulnerabilities is
in conflict with the goal of reducing false positives in the
current one-shot detection paradigm. To mitigate this tension,
we break one-shot detection into two adversarial stages, i.e.,
the generation stage and discrimination/ranking stage. The idea
of dividing one-stage into multiple stages is also employed in
industrial recommendation systems [7] to optimize respective
goals at different stages.

Figure 2 shows the overall framework of GPTLENS, where
an LLM plays the roles of two adversarial agents, i.e., the au-
ditor and the critic, activated by different prompts in respective
stages.

In the generation stage, multiple auditors independently au-
dit the smart contract code, generating identified vulnerabilities
along with their associated functions and reasoning. The goal
of this task is to yield a broad spectrum of answers, with the
hope of encompassing the correct one.

In the discrimination stage, the identified vulnerabilities
and their associated reasoning are scrutinized, evaluated and
ranked by the critic agent, taking into account factors such
as correctness, severity and profitability. The goal of this task
is to simulate the role of an oracle, i.e., to precisely discern
the correct answer and rank it above all other false positives.
It is worth noting that the discrimination is not solely based
on the identified vulnerability, but heavily leans on reasoning
provided by auditors.

Vul_name: {xx} |
Function: {xx}
Reason: {xx}

Vul_name: {xx} |
Function: {xx}
Reason: {xx}

Smart
contract

Vul_name: {xx} |
Function: {xx}
Reason: {xx}

Generation stage

Auditor prompt:
You are a smart
contract auditor..

Critic prompt:
You are a
vulnerability
critic ..

Adversarial

agents @

Vul_name: {xxx}
Function: {xxx}
Criticism: {xxx}
Correctness: {score}
Severity: {score}
Profitability: {score}

Top-k results

Vul_name: {xx}
Function: {xx}

Rank

Reason: {xx}

Discrimination/ranking stage

Fig. 2. GPTLENS: an adversarial framework that breaks the conventional one-stage detection into the generation and discrimination stages.

Proof of feasibility: Before diving into the details of
GPTLENS, we raise a pertinent question: How is the critic
agent able to discriminate between answers generated by the
auditor agents if all the agents are played by the same LLM?

The answer lies in the difficulty of two tasks: the generation
task is more challenging than the discrimination task because
the former demands the model to dig out all possible vulnera-
bilities within an entire smart contract project, while the latter
only requires an assessment of recognized vulnerabilities at
the function level. Moreover, the success of the adversarial
framework has been previously corroborated by GANs [12],
wherein a very simple discriminator can be employed to train
a sophisticated generator [33].

To provide a clearer picture, in Figure 3 we present the
reasoning generated by an auditor along with the criticism
from the critic for the code snippet in Listing 2. The critic
concludes that the vulnerability identified by the auditor is a
factual error.

Reasoning by the auditor: There is a potential re-
entrancy attack within the MutiTransfer function because
it does not follow the Checks-Effects-Interactions pattern.
The state is not updated before calling external contracts,
which could potentially lead to re-entrancy attacks.

Criticism from the critic: In the given multiTrans-
fer function, there doesn’t appear to be any external
calls before state changes. The function updates the
balances appropriately before emitting a Transfer event.
It’s worth noting that events like Transfer don’t actually
invoke external contract functions. They simply log data.
Therefore, the vulnerability description “Potential for Re-
Entrancy Attack” seems incorrect based on the provided
code.

Fig. 3. Reasoning and criticism for code snippet in Listing 2

Auditor prompt: You are a smart contract auditor, iden-
tify and explain severe vulnerabilities in the provided
smart contract, ensuring they are real-world exploitable
and beneficial to attackers. Include reasoning and corre-
sponding function code as well. OQutput up to {m} most
severe vulnerabilities. If no vulnerabilities are detected,
output “null”.

{contract code}

Remember your output should adhere to the following
format: {json format}.

Fig. 4. Auditor prompt

A. Generation Stage

The goal of the generation stage is to identify a candidate set
of vulnerabilities that includes the correct answer. Therefore,
we set up n auditors and initialize them with the auditor
prompt presented in Figure 4. Each auditor is responsible
for identifying up to m vulnerabilities within the given smart
contract code. The auditors’ output strictly follows a JSON
format for ease of parsing. Temperature ¢ is set based on the
hyper-parameters n and k since the optional value for ¢ varies
depending on the number of samples. If n is large, ¢ should
also be set higher to prevent multiple auditors from generating
similar answers.

e M)
Critic prompt: As a meticulous and harsh critic, your
duty is to scrutinize the function and evaluate the iden-
tified vulnerabilities and reasonings with scores in terms
of correctness, severity and profitability. Your criticism
should include an explanation for your scoring.

{output of auditors}
Remember your output should adhere to the following
format: {json format}.

Fig. 5. Critic prompt

B. Discrimination/ranking Stage

The role of the critic agent is to emulate an oracle, i.e., to
discern the best answer from a multitude of false positives. To
ascertain what is the best, we consider three distinct factors:
correctness, severity and profitability, because although some
false positives may be correct, they might possess a diminished
level of severity or may not be profitable for attackers.

Concretely, the critic agent is activated using the critic
prompt shown in Figure 5, which directs the critic to evaluate
the vulnerability, assign scores based on its reasoning, and
provide explanation for these scores. Subsequently, we rank all
vulnerabilities descendingly based on these scores and choose
the top-k vulnerabilities from the list as the output. Ideally,
if the input list of vulnerabilities contains the ground-truth
answer, the critic will place it at the forefront.

In our experiments, we employ only one critic agent to
ensure that the criticism and scoring remain consistent across
various vulnerabilities. Moreover, we set a low temperature
value to reduce randomness.

IV. EXPERIMENT

In this section, we validate the previous analyses and the
efficacy of GPTLENS via experimental results.

A. Experimental Settings

Dataset: We collected the source code of 13 smart contracts
from Etherscan', with each containing a reported vulnerability.
We sourced the labels and descriptions for these vulnerabilities
from the CVE database [45].

Competitors: The experiment involves six competitors un-
der different settings. For methods, A, R, C, O represent
Auditor, Random, Critic and Oracle. For parameters, n denotes
the number of auditors and m denotes the maximum number
of vulnerabilities identified by each auditor. The notation
(n=2,m=3) means there are 2 auditors, and each auditor can
generate up to 3 vulnerabilities. GPT-4 is adopted as the
backend LLM. The descriptions for six competitors are as
follows:

e A(n=1,m=1): One auditor identifies up to one vulnera-
bility as the output (aka one-stage detection).

¢ A+R(n=1,m=3): One auditor identifies up to three vul-
nerabilities and randomly pick one as the output.

¢ A+C(n=1,m=3): One auditor identifies up to three vul-
nerabilities, and the critic scores them. The vulnerability
with the highest score is selected as the output.

e A+O(n=1,m=3): One auditor identifies up to three vul-
nerabilities and an oracle is adopted to pick the best
answer as the output.

o A+C(n=2,m=3): Two auditors identify up to three vul-
nerabilities per each and the critic scores them. The
vulnerability with highest score is selected as the output.

e A+O(n=2,m=3): Two auditors identify up to three vul-
nerabilities per each and an oracle is adopted to pick the
best answer as the output.

Thttps://etherscan.io

TABLE I
HIT TIMES ON 13 SMART CONTRACTS LOGGED IN CVE DATABASE.

Method | A | A+R | A+C | A+O | A+C | A+O
Parameter | nlml | nlm3 | nlm3 | nlm3 | n2m3 | n2m3
2018-10299 3 1 2 3 3 3
2018-10666 3 1 3 3 3 3
2018-11335 1 1 1 3 1 3
2018-11411 0 2 2 3 2 3
2018-12025 0 0 2 3 3 3
2018-13836 2 0 1 1 0 2
2018-15552 0 0 1 2 2 3
2018-17882 0 0 2 2 3 3
2018-19830 0 1 2 2 3 3
2019-15078 0 0 0 0 0 0
2019-15079 0 0 0 0 0 0
2019-15080 3 1 2 3 3 3
2018-18425 0 0 0 0 0 0
Hit # (CVE) 5 6 10 10 9 10

Hit ratio (CVE) 38.5% 46.2% 76.9% 76.9% 69.2% 76.9%
Hit # (trail) 13 7 18 25 23 29
Hit ratio (trail) ‘ 33.3% 18.0% 46.2% 64.1% 59.0% 74.4%

For all the auditors, the temperature ¢ is set to 0.7, while for
the critic, ¢ is set to O to achieve confident and consistent scor-
ing. It should be noted that the oracle leverages the ground-
truth label information, therefore A+O only demonstrates an
ideal performance. Due to the constraint on the token number
per query, larger n and m are not tested in our experiments.

B. Performance Comparison

Each detection is conducted over three trials. For each
trial, up to one vulnerability is selected as the output. A
trial is deemed successful only if the function, vulnerability,
and reasoning are all in alignment with the CVE report. The
number of successful trials is presented in Table I, where Hit #
(CVE) is the number of smart contracts for which the method
correctly detected vulnerabilities at least once, and Hit # (trial)
represents the number of successful trials conducted across 13
smart contracts.

From Table I we can make several observations:

(1) At the trial level, A+R(n=1,m=3) performs worse than
A(n=1,m=1), suggesting that generating more answers
introduces more false positives. Nonetheless, at the con-
tract level, A+R(n=1,m=3) identifies some CVEs are
not detected by A+R(n=1,m=1) like 2018-11411 and
2018-19830, which implies that generating more answers
increases the likelihood of generating correct answer.

(2) A more evident observation to support the above argu-
ment is that A+O(n=1,m=3) works significantly better
than A(n=1,m=1).

3) A+C(n=1,m=3) outperforms A+R(n=1,m=3), indicating
that the critic agent is very crucial to discern true vul-
nerabilities from false positives introduced by generating
more answers. A+C(n=1,m=3) also works better than
A(n=1,m=1): the Hit ratio (CVE) increases from 38.5%
to 76.9%, and the Hit ratio (trail) increases from 33.3%
to 46.2%.

(4) Increasing the number of auditors can further im-
prove the performance: compare A+C(n=1,m=3) with
A+C(n=2,m=3), the Hit ratio (trail) increases from 46.2%
to 59.0%.

C. Case Study

We provide a case study to demonstrate how GPTLENS
performs by taking the smart contract code presented in
Listing 4 (see Appendix) as the input, with n and m set to
1 and 3 correspondingly. The outputs of both the auditor and
critic are presented in Listing 3.

In the generation stage, the auditor identifies three vul-
nerabilities and their associated reasoning: (1) ‘“Race con-
dition” in the approve function (line 101-105); (2) “Race
condition” in the transferFrom function (line 93-100); (3)
“Unexpected behvaior” in the UBSexToken function (line 115-
119). Although all explanations seem plausible, the first and
second vulnerabilities are actually false positives. For the first
vulnerability, the LLM overlooks the condition statement in
line 102. For the second vulnerability, the LLM disregards
the fact that Ethereum transactions are executed sequentially
and atomically. As for the third vulnerability, its name differs
from “Constructor typo,” which is labeled as the ground truth,
Nevetheless, the reasoning and identified function are accurate.

In the discrimination stage, the critic uses the vulnerabilities,
function code, and the auditor’s reasoning as input and outputs
criticism and scores with respect to correctness, severity, and
profitability. As shown in Listing 3, the critic determines
that the reasoning for the first and second vulnerabilities is
incorrect, assigning them low scores. Conversely, the critic
recognizes that the reasoning and identification of the third
vulnerability are accurate, assigning it the highest scores.
Consequently, GPTLENS successfully identifies the genuine
vulnerability within the smart contract.

As we can see, the entire detection process neither involves
manually-defined heuristics and rules for fixed-pattern recog-
nition nor requires a predefined set of vulnerability types,
showing that GPTLENS holds the potential to generalize well
across a wide range of vulnerabilities.

V. FUTURE DIRECTIONS

To develop a general, practical LLM-powered smart con-
tract vulnerability detection method, several directions can be
explored in the future:

Diversity in generation: Increasing the diversity of the
generation task helps to enhancing the finding of more true
positives. It is benefical to explore innovative prompt engi-
neering strategies and diversity metrics to encourage more
generation and auditing diversity while maintaining the same
number of generated samples.

Consistency in discrimination: Due to token count con-
straints, a large number of input vulnerabilities for the discrim-
ination task need to be divided into multiple batches. This
division can lead to scoring inconsistencies across different
batches, even with a low temperature setting. In-context learn-
ing, using few-shot examples, could be explored to teach the

"function_name": "approve",

"vulnerability": "Race Condition",

"auditor": "This function does not reset
the allowance before setting the new
one. This can be exploited by the
spender by front running the approver,

allowing them to increase their

allowance.",

"critic": "The statement is correct in
pointing out that this function does
not inherently reset the allowance.
However, the function does include a
check to ensure that if the allowance
is non-zero, the new value must be
zero (and vice versa). Therefore,
risk is not as serve as stated.",

"correctness": 3,

"severity": 0,

"profitability": O

the

"function_name": "transferFrom",

"vulnerability": "Race Condition",

"auditor": "The _allowance is fetched
before the transfer is made, making it

susceptible to a race condition. An

attacker could call approve() in a
transaction with a higher gas price,
allowing them to increase the
allowance before the transfer is
executed.",

"critic": "The statement is incorrect. The
atomicity and sequential execution of
Ethereum transactions ensure that

there’s no race condition between
fetching _allowance and executing the
token transfer.",

"correctness": 2,

"severity": 0,

"profitability": 0

"function_name": "UBSexToken",
"vulnerability": "Unexpected Behaviour",
"auditor": "The function name does not
match the contract name. This
indicates that this function is
intended to be the constructor, but it
is not. This means that anyone can
call the function at any time and
reset the totalSupply and owner of the
token.",

"critic": "The reasoning is correct.
function name does not match the
contract name, indicating that it is
intended to be the constructor but it
is not. This means that anyone can
call the function at any time and
reset the totalSupply and owner of the

token, which is a severe problem.",

"correctness": 9,

"severity": 9,

"profitability": 9,

The

Listing 3. A case study on CVE 2018-19830.

LLM for more consistent scoring on novel observations and
unseen events.

Reasoning process optimization: A popular direction to
enhance the efficacy of LLMs is to design intricate reasoning
processes that mimic the thought process of humans, such as
chain-of-thoughts [47], tree-of-thoughts [54] and cumulative
reasoning [56], which can be adapted for the vulnerability
detection task.

Integrating Generative AI agents: Generative Al
agents [27], [51] employ LLMs as the core component and
perform specific roles in various tasks like software devel-
opment [30]. In this paper, we design only two synergistic
roles for agents. Exploring additional roles for Al agents to
achieve sophisticated functionalities, as well as designing how
these agents collaboratively interact to solve complex detection
tasks, are promising directions.

Enabling external knowledge plug-in: LLMs feature ca-
pabilities to use tools or call external APIs to expand their
contextual knowledge [34]. It would be intriguing to explore
this functionality by allowing the LLM to autonomously de-
termine when and what knowledge is beneficial for generating
the correct answer for the vulnerability detection task.

LLM-assisted tools: Instead of serving as an end-to-end
solution, LLM can be utilized as a tool to assist developers and
auditors throughout the entire software engineering, including
code generation [9], [20], code understanding [36], [46],
vulnerability detection [42], [49] and code repair [28], [52],
to name a few.

VI. RELATED WORK

Various research efforts are dedicated to detecting vulnera-
bilities in smart contracts.

Traditional methods: Static analysis tools like Secu-
rify [44], Vandal [4], Zeus [19], and Slither [11] examine
the source code without execution, aiming to detect potential
vulnerabilities based on code patterns and structures. In com-
parison, dynamic analysis tools [13], [18], [50], [55] employ
fuzz testing techniques that generates test inputs to identify
anomalies during the actual execution of smart contracts,
providing insights into runtime vulnerabilities. Symbolic exe-
cution tools like Manticore [24] and Mythril [25] investigate
vulnerabilities across both bytecode and source code levels by
examining all possible execution paths. Additionally, formal
verification techniques, such as Verx [29] and VeriSmart [37],
validate smart contracts against user-defined specifications,
ensuring adherence to desired properties.

DL-powered methods: Deep learning (DL)-based methods
like sequence-based models [31], [41], CNN-based meth-
ods [39], graph neural networks-based methods [22], [23],
[60] are proposed to extract high-level representations to
enhance the efficacy of vulnerability detection. Some hybrid
methods [21], [35], [53] combines deep-learning techniques
with traditional methods. For examples, ESCORT [35] and
xFuzz [53] distill the outputs of traditional methods like Slither
and Mythril to achieve good generality and inference effi-
ciency. Some works [17], [38] equipped with more advanced

NLP techniques like BERT. A BERT-based approach [16] also
demonstrates promising efficacy in Ethereum fraud detection
tasks.

Generative LLM-powered methods: Very recent, some
studies [8], [10] measure the performance of LLMs on the
real-world datasets, suggesting that LLMs face precision-
related challenges due to a high occurrence of false positives.
GPTScan [40] is introduced in an attempt to mitigate false
positives by utilizing rule-based pre-processing and post-
confirmation, which requires expert knowledge and exten-
sive engineering efforts. In comparison, GPTLENS is more
lightweight and entirely LLM-driven, making it general for a
broader range of vulnerabilities.

VII. CONCLUSION

This study provides a systematical analysis of harnessing
generative LLMs for smart contract auditing, especially on
the challenges of balancing the generation of correct answers
against the backdrop of false positives. To address this Catch-
22 dilemma, we present an innovative two-stage framework,
GPTLENS, by designing the LLM to play two adversarial
agent roles: auditor and critic. The auditor focuses on un-
covering diverse vulnerabilities complemented by intermedi-
ate reasoning while the critic assesses the validity of these
vulnerabilities and the associated reasoning. Empirical results
demonstrate that GPTLENS delivers pronounced improve-
ments over the conventional one-stage detection and is entirely
LLM-driven, which negates the dependency for specialist
expertise in smart contracts and exhibits generalization to a
broad spectrum of vulnerabilities.

VIII. ACKNOWLEDGMENT

This research is partially sponsored by the NSF CISE grants
2038029, 2302720, 2312758, an IBM faculty award, and a
grant from CISCO Edge Al program.

REFERENCES
[1] AlgoWriting. A simple guide to setting the gpt-
3 temperature, 2020. https://algowriting.medium.com/

gpt-3-temperature-setting- 101-41200ffOdObe.

[2] Anthropic. Introducing claude. Anthropic Blog, 2022. https://www.
anthropic.com/index/introducing-claude.

[3] L. Brent, N. Grech, S. Lagouvardos, B. Scholz, and Y. Smaragdakis.
Ethainter: a smart contract security analyzer for composite vulnera-
bilities. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 454-469,
2020.

[4] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz,
and B. Scholz. Vandal: A scalable security analysis framework for smart
contracts. arXiv preprint arXiv:1809.03981, 2018.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language
models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901, 2020.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language
models are few-shot learners. Advances in neural information processing
systems, 33:1877-1901, 2020.

[71 Y. Cao, S. Hu, Y. Gong, Z. Li, Y. Yang, Q. Liu, and S. Ji. Gift:
Graph-guided feature transfer for cold-start video click-through rate
prediction. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, pages 2964-2973, 2022.

https://algowriting.medium.com/gpt-3-temperature-setting-101-41200ff0d0be
https://algowriting.medium.com/gpt-3-temperature-setting-101-41200ff0d0be
https://www.anthropic.com/index/introducing-claude
https://www.anthropic.com/index/introducing-claude

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]

C. Chen, J. Su, J. Chen, Y. Wang, T. Bi, Y. Wang, X. Lin, T. Chen, and
Z. Zheng. When chatgpt meets smart contract vulnerability detection:
How far are we? arXiv preprint arXiv:2309.05520, 2023.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374,
2021.

I. David, L. Zhou, K. Qin, D. Song, L. Cavallaro, and A. Gervais.
Do you still need a manual smart contract audit? arXiv preprint
arXiv:2306.12338, 2023.

J. Feist, G. Grieco, and A. Groce. Slither: a static analysis framework
for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB),
pages 8-15. IEEE, 2019.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
Advances in neural information processing systems, 27, 2014.

G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce. Echidna: effective,
usable, and fast fuzzing for smart contracts. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 557-560, 2020.

J. Heller. Catch-22: a novel, volume 4. Simon and Schuster, 1999.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang. Large language models for software engineer-
ing: A systematic literature review. arXiv preprint arXiv:2308.10620,
2023.

S. Hu, Z. Zhang, B. Luo, S. Lu, B. He, and L. Liu. Bertdeth: A pre-
trained transformer for ethereum fraud detection. In Proceedings of the
ACM Web Conference 2023, pages 2189-2197, 2023.

S.Jeon, G. Lee, H. Kim, and S. S. Woo. Smartcondetect: Highly accurate
smart contract code vulnerability detection mechanism using bert. In
KDD Workshop on Programming Language Processing, 2021.

B. Jiang, Y. Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pages
259-269, 2018.

S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: analyzing safety
of smart contracts. In Ndss, pages 1-12, 2018.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al. Competition-level
code generation with alphacode. Science, 378(6624):1092-1097, 2022.
Z. Liao, Z. Zheng, X. Chen, and Y. Nan. Smartdagger: a bytecode-
based static analysis approach for detecting cross-contract vulnerability.
In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 752-764, 2022.

Z. Liu, P. Qian, X. Wang, L. Zhu, Q. He, and S. Ji. Smart contract
vulnerability detection: from pure neural network to interpretable graph
feature and expert pattern fusion. arXiv preprint arXiv:2106.09282,
2021.

Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang. Com-
bining graph neural networks with expert knowledge for smart contract
vulnerability detection. IEEE Transactions on Knowledge and Data
Engineering, 2021.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg. Manticore: A user-friendly symbolic
execution framework for binaries and smart contracts. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 1186-1189. IEEE, 2019.

Mythril. https://github.com/Consensys/mythril.

OpenAl Gpt-4 technical report, 2023. https://arxiv.org/abs/2303.08774.
J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S.
Bernstein. Generative agents: Interactive simulacra of human behavior.
arXiv preprint arXiv:2304.03442, 2023.

R. Paul, M. M. Hossain, M. Hasan, and A. Igbal. Automated program
repair based on code review: How do pre-trained transformer models
perform? arXiv preprint arXiv:2304.07840, 2023.

A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev. Verx: Safety verification of smart contracts. In 2020 IEEE
symposium on security and privacy (SP), pages 1661-1677. IEEE, 2020.
C. Qian, X. Cong, C. Yang, W. Chen, Y. Su, J. Xu, Z. Liu, and
M. Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

(31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang. Towards
automated reentrancy detection for smart contracts based on sequential
models. [EEE Access, 8:19685-19695, 2020.

P. Qian, Z. Liu, Y. Yin, and Q. He. Cross-modality mutual learning
for enhancing smart contract vulnerability detection on bytecode. In
Proceedings of the ACM Web Conference 2023, pages 2220-2229, 2023.
A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

T. Schick, J. Dwivedi-Yu, R. Dessi, R. Raileanu, M. Lomeli, L. Zettle-
moyer, N. Cancedda, and T. Scialom. Toolformer: Language models can
teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.
C. Sendner, H. Chen, H. Fereidooni, L. Petzi, J. Konig, J. Stang,
A. Dmitrienko, A.-R. Sadeghi, and F. Koushanfar. Smarter contracts:
Detecting vulnerabilities in smart contracts with deep transfer learning.
In NDSS, 2023.

D. Shen, X. Chen, C. Wang, K. Sen, and D. Song.
ing language models for code syntax understanding.
arXiv:2210.14473, 2022.

S. So, M. Lee, J. Park, H. Lee, and H. Oh. Verismart: A highly precise
safety verifier for ethereum smart contracts. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1678-1694. IEEE, 2020.

X. Sun, L. Tu, J. Zhang, J. Cai, B. Li, and Y. Wang. Assbert: Active and
semi-supervised bert for smart contract vulnerability detection. Journal
of Information Security and Applications, 73:103423, 2023.

Y. Sun and L. Gu. Attention-based machine learning model for smart
contract vulnerability detection. In Journal of physics: conference series,
volume 1820, page 012004. IOP Publishing, 2021.

Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and
Y. Liu. When gpt meets program analysis: Towards intelligent detection
of smart contract logic vulnerabilities in gptscan. arXiv preprint
arXiv:2308.03314, 2023.

W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong. Towards safer
smart contracts: A sequence learning approach to detecting security
threats. arXiv preprint arXiv:1811.06632, 2018.

C. Thapa, S. I. Jang, M. E. Ahmed, S. Camtepe, J. Pieprzyk, and
S. Nepal. Transformer-based language models for software vulnerability
detection. In Proceedings of the 38th Annual Computer Security
Applications Conference, pages 481-496, 2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere, N. Goyal, E. Hambro, F. Azhar, et al.
Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev. Securify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, pages 67-82, 2018.

N. vulnerability database. Common vulnerabilities and exposures (cves).
https://cve.mitre.org/index.html.

Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi.
Codet5+: Open code large language models for code understanding and
generation. arXiv preprint arXiv:2305.07922, 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou, et al. Chain-of-thought prompting elicits reasoning in large
language models. Advances in Neural Information Processing Systems,
35:24824-24837, 2022.

D. Wong and M. Hemmel. Decentralized application security project
top 10 of 2018, 2018.

Y. Wu, N. Jiang, H. V. Pham, T. Lutellier, J. Davis, L. Tan, P. Babkin,
and S. Shah. How effective are neural networks for fixing security
vulnerabilities. arXiv preprint arXiv:2305.18607, 2023.

V. Wiistholz and M. Christakis. Harvey: A greybox fuzzer for smart
contracts. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1398-1409, 2020.

Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang,
S. Jin, E. Zhou, et al. The rise and potential of large language model
based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

C. S. Xia, Y. Wei, and L. Zhang. Automated program repair in
the era of large pre-trained language models. In Proceedings of the
45th International Conference on Software Engineering (ICSE 2023).
Association for Computing Machinery, 2023.

Benchmark-
arXiv preprint

https://github.com/Consensys/mythril
https://arxiv.org/abs/2303.08774
https://cve.mitre.org/index.html

1
4

5

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Y. Xue, J. Ye, W. Zhang, J. Sun, L. Ma, H. Wang, and J. Zhao. xfuzz: ¢
Machine learning guided cross-contract fuzzing. IEEE Transactions on
Dependable and Secure Computing, 2022.

S. Yao, D. Yu, J. Zhao, 1. Shafran, T. L. Griffiths, Y. Cao, and /!
K. Narasimhan. Tree of thoughts: Deliberate problem solving with large 73
language models. arXiv preprint arXiv:2305.10601, 2023. !
W. Zhang, S. Banescu, L. Pasos, S. Stewart, and V. Ganesh. Mpro: 7
Combining static and symbolic analysis for scalable testing of smart ’Z
contract. In 2019 IEEE 30th International Symposium on Software 79
Reliability Engineering (ISSRE), pages 456-462. IEEE, 2019. b
Y. Zhang, J. Yang, Y. Yuan, and A. C.-C. Yao. Cumulative reasoning s>
with large language models. arXiv preprint arXiv:2308.04371, 2023.

Z. Zhang, B. Zhang, W. Xu, and Z. Lin. Demystifying exploitable bugs
in smart contracts. ICSE, 2023.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais. Sok: Decentralized
finance (defi) attacks. In 2023 IEEE Symposium on Security and Privacy
(SP), pages 2444-2461. 1IEEE, 2023.

Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He. Smart contract
vulnerability detection using graph neural networks. In Proceedings 9
of the Twenty-Ninth International Conference on International Joint'"
Conferences on Artificial Intelligence, pages 3283-3290, 2021.

o

84
85
86
37
88
89
90
91
92
93

94
95
96

101
102
103
104
105
106

APPENDIX A
SOURCE CODE OF CASE STUDY

107
108

pragma solidity

library SafeMath {

}

contract ERC20Basic {

uint public totalSupply;
function balanceOf (address who)
function transfer (address to, uint value);

event Transfer (address indexed from, address indexed to, uint value);
function allowance (address owner,
function transferFrom(address from,
function approve (address spender,
event Approval (address indexed owner,

)

109
110
111

112
113
114
115
116
117
118
119
120
121

122

"0.4.24;

ntents

constant returns (uint);

address spender) constant returns (uint);
address to, uint value);
uint value);

address indexed spender, 123

uint value);

contract BasicToken is ERC20Basic {
using SafeMath for uint;
address public owner;
bool public transferable = true;
mapping (address => uint) balances;
mapping (address => bool) public frozenAccount;
modifier onlyPayloadSize (uint size) {

}

if (msg.data.length < size + 4) {
throw;

}

modifier unFrozenAccount f{

}

require (! frozenAccount [msg.sender]);

modifier onlyOwner {

}

if (owner == msg.sender) {

} else {
InvalidCaller (msg.sender);
throw;

}

modifier onlyTransferable {
if (transferable) {
} else {
LiquidityAlarm("The liquidity is switched off");
throw;
}
)
event FrozenFunds (address target, bool frozen);
event InvalidCaller (address caller);
event Burn(address caller, uint value);
event OwnershipTransferred(address indexed from, address indexed to);
event InvalidAccount (address indexed addr, bytes msg);

event
function transfer(address _to, uint _value)

}

function balanceOf (address _owner)

LiquidityAlarm(bytes msg);
onlyPayloadSize (2 * 32)
unFrozenAccount onlyTransferable {

(frozenAccount [_to]) {

InvalidAccount (_to, "The receiver account is frozen");
} else {
balances [msg.sender] = balances[msg.sender].sub (_value);
balances[_to] = balances[_to].add(_value);

Transfer (msg.sender, _to, _value);

if

}

view returns (uint balance) {

return balances[_owner];

}

function freezeAccount (address target,
frozenAccount [target] = freeze;
FrozenFunds (target, freeze);

bool freeze) onlyOwner public {

}
function accountFrozenStatus(address target) view returns
return frozenAccount [target];

(bool frozen) (

}
function transferOwnership (address newOwner)
if (newOwner != address(0)) {

address oldOwner = owner;
owner = newOwner;
OwnershipTransferred(oldOwner,

onlyOwner public {

owner) ;
}

}

function switchLiquidity(bool _transferable)
transferable = _transferable;
return true;

onlyOwner returns (bool success)

}
function liquidityStatus() view returns
return transferable;

(bool _transferable) ({

}
}

contract StandardToken is BasicToken {

mapping (address => mapping(address => uint)) allowed;

function transferFrom(address _from, address _to, uint _value) onlyPayloadSize
(3 * 32) unFrozenAccount onlyTransferable {
var _allowance = allowed[_from] [msg.sender];
require (! frozenAccount [_from] && !frozenAccount[_to]);
balances[_to] = balances[_to].add(_value);
balances[_from] = balances[_from].sub(_value);
allowed[_from] [msg.sender] = _allowance.sub(_value);
Transfer (_from, _to, _value);
}
function approve (address _spender, uint _value) unFrozenAccount {
if ((_value != 0) && (allowed[msg.sender] [_spender] != 0)) throw;

allowed[msg.sender] [_spender] = _value;
Approval (msg.sender, _spender, _value);
}
function allowance (address _owner,
remaining) {
return allowed|[_owner] [_spender];

address _spender) view returns (uint

}

contract BAFCToken is StandardToken {
string public name = "Business Alliance Financial Circle";
string public symbol = "BAFC";
uint public decimals = 18;
function UBSexToken() {
msg.sender;
totalSupply = 1.9 * 10 #x 26;
balances [owner] = totalSupply;

owner =

}
function () public payable {
revert ();

}

{

Listing 4. Smart contract code reported in CVE 2018-19830

	Introduction
	LLM-powered Vulnerability Detection
	Standard Detection Paradigms
	Advantages of LLM-powered Detection
	Limitations of Current LLM-powered Detection
	Large number of false positives
	Large number of false negatives

	Two-Stage Adversarial Detection Framework
	Generation Stage
	Discrimination/ranking Stage

	Experiment
	Experimental Settings
	Performance Comparison
	Case Study

	Future Directions
	Related work
	Conclusion
	Acknowledgment
	References
	Appendix A: Source code of case study

