

Nombre de la materia:

Sistemas Neumáticos e Hidráulicos.

Grupo:

4 B

Nombre del Alumno:

Ayala Rosales Ángel Gabriel. Cobos Aquino Jonathan Alejandro.

Martínez Muñoz Leonardo. Moreno Castillo Jaime Alberto. Segura Guillen Juan Efrén.

Nombre del Profesor:

Adán vela Ayala

Nombre de la práctica:

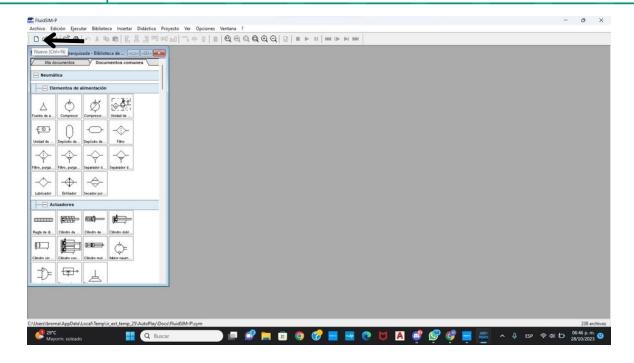
Manual: Creación de un circuito neumático "Practica 4"

Contenido

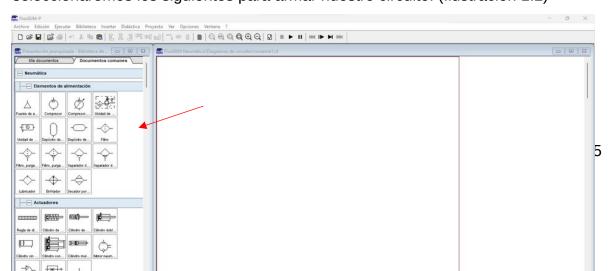
INTRODUCCION.	4
COMO ARMAR EL CIRCUITO NEUMÁTICO.	5
Paso 1	5
Paso 2	6
Paso 3 Identificar los elementos neumáticos a utilizar.	7
Paso 4	8
Paso 5	9
Paso 6	11
Paso 7	12
COMO CONECTAR EL CIRCUITO NEUMÁTICO	13
Paso 1	13
Paso 2	14
Paso 3	15
Paso 4	16
Paso 5	17
Paso 6	18
Paso 7	19
Paso 8	21
Paso 9	22
Paso 10	23
Paso 11	24
Paso 12	25
Paso 13	27

EJERCICIO	29
Paso 1.	29
Paso 2.	30
EJERCICIO PARTE 2	31
Paso 1.	31
Paso 2.	31
Paso 3	32
ANEXOS	33
CONCLUSIÓN	34
<u>BIBLIOGRAFÍA</u>	35

Introducción.


En este documento se mostrará el armado de un circuito neumático y se irán mostrando paso por paso el cómo se tiene que configurar las válvulas y el cómo se debe de acomodar para el momento de conectarlo funcione de manera correcta, todo esto se representara en el programa de FESTO y además se anexara un video donde de igual manera se explicara su armado y la configuración de las válvulas. Además, se mostrarán los cálculos que se llevarán a cabo para cierto caso y un video explicándolo para mayor entendimiento de este.

Como armar el circuito neumático.


Paso 1.- Daremos clic en el apartado de nuevo tal como se indica en la imagen. (Ilustración 1.1).

Paso 2.- En la parte izquierda nos aparecerán elementos neumáticos seleccionaremos los siguientes para armar nuestro circuito. (Ilustración 1.2)

Paso 3.- Identificar los elementos neumáticos a utilizar.

- Fuente de aire comprimido. (Ilustración 1.3).
- 2 válvulas 3/2 vías. (Ilustración 1.4).
- Válvula 5/2 vías. (Ilustración 1.5).
- cilindro doble efecto. (Ilustración 1.6).
- Válvula estranguladora antirretorno. (Ilustración 1.7).

Ilustración 1.3 Ilustración 1.4 Ilustración 1.5 Ilustración 1.6 Ilustración 1.7

A continuación, se muestra cómo se verían los elementos ya colocados en nuestro circuito neumático.(Ilustración 1.8)

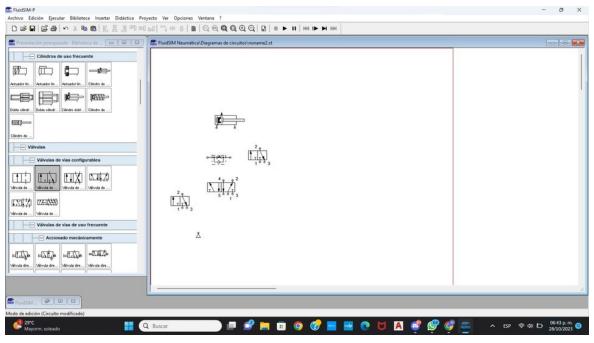
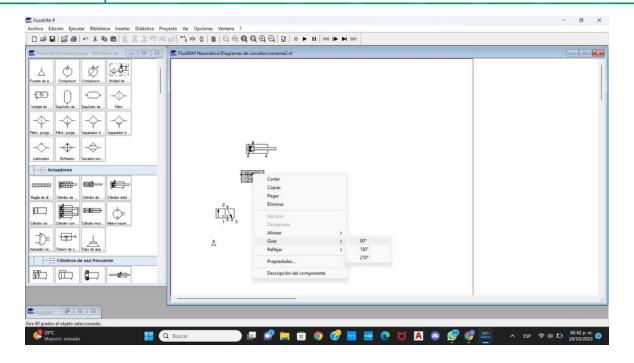
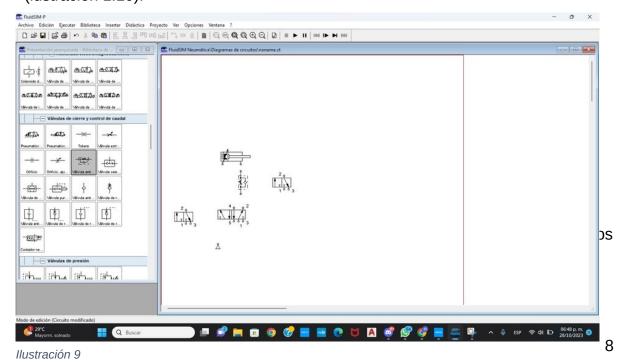
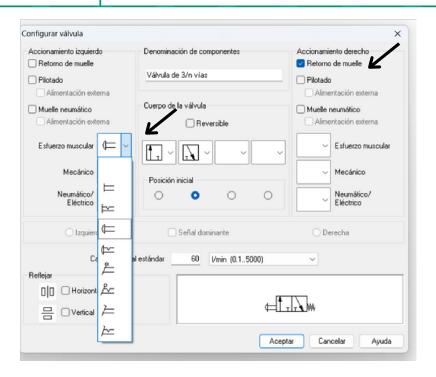



Ilustración 1.8


Paso 4.- Daremos doble clic en la válvula estranguladora antirretorno y la giraremos a 90 grados. (lustración 1.9).



Una vez colocada 90 grados se vería de la siguiente manera como se muestra. (lustración 1.10).

En esta otra válvula 3/2 vías haremos lo mismo pero esta vez colocaremos un rodillo. (Ilustración 1.12).

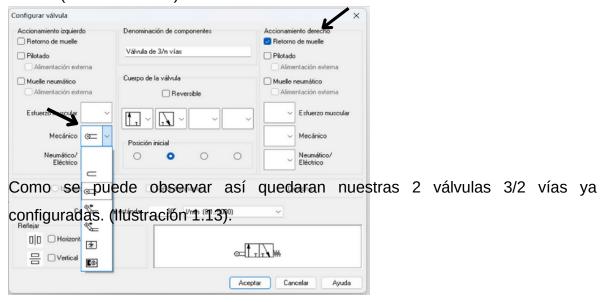
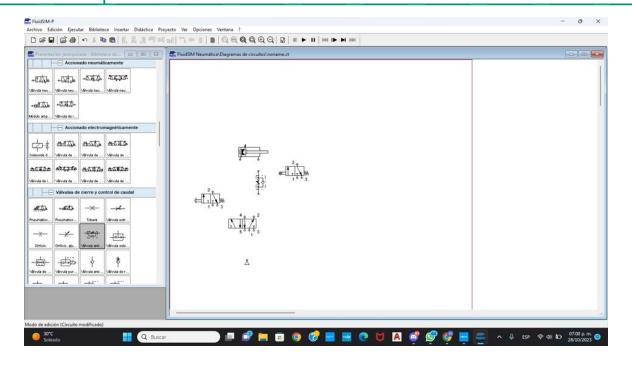
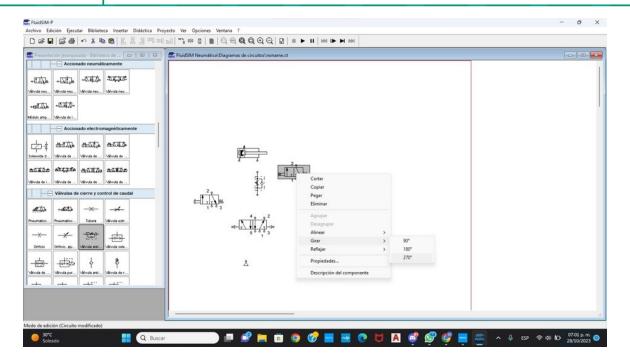



Ilustración 11

Paso 6.- Configuraremos nuestra válvula 5/2 vías colocando accionamiento neumático por ambos lados. (Ilustración 1.14).



Configurar válvula		×
Accionamiento izquierdo Retorno de muelle	Denominación de componentes	Accionamiento derecho
Pilotado Alimentación externa	Válvula de 5/n vías	Pilotado Alimentación externa
Muelle neumático Alimentación externa	Cuerpo de la válvula Reversible	Muelle neumático Alimentación externa
Esfuerzo muscular		∀ Esfuerzo muscular
Mecánico V	Posición inicial	V Mecánico
Neumático/ Eléctrico	0 0 0	Neumático/ Eléctrico
○ Izquierda	Señal dominante	techa
Caudal nomina	l estándar 60 [/min (0.15000)	
Reflejar	۲٫۱۸	<u>⊅</u> →
는 Vertical	Acept	ar Cancelar Ayuda
	Асери	Ayuud Ayuud

Paso 7.-Giramos a 270° la válvula 3/2 vías con rodillo. (Ilustración 1.15).

Así se ve una vez ya girada la válvula. (Ilustración 1.16).

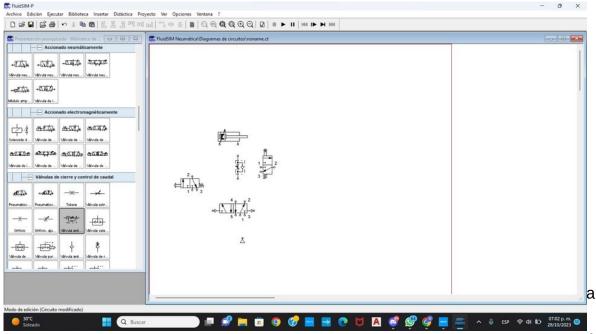
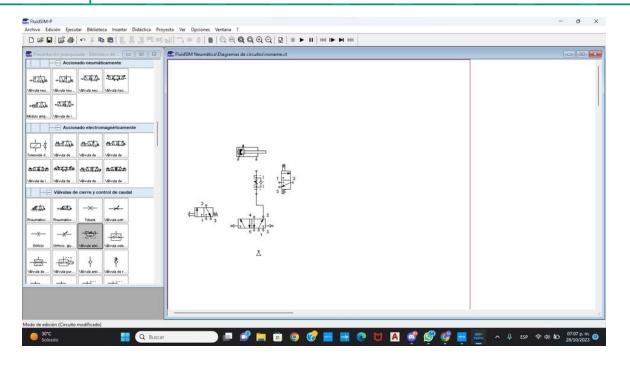
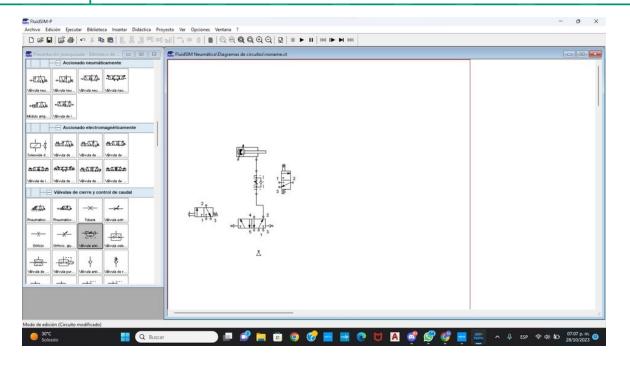
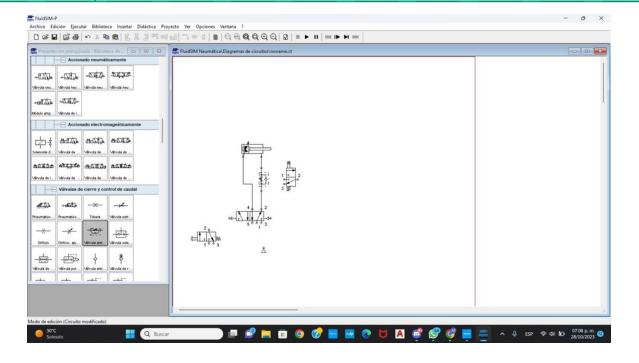



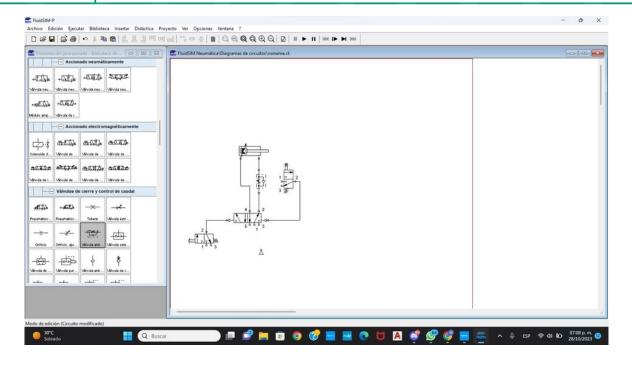
Ilustración 15



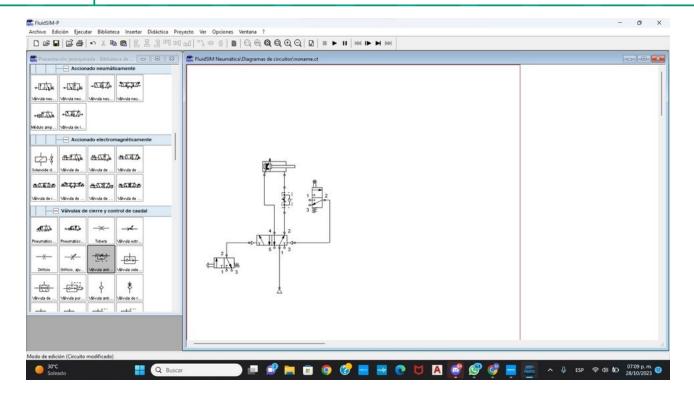
Paso 2.- Conectamos la válvula estranguladora antirretorno al cilindro de doble efecto. (Ilustración 2.2).



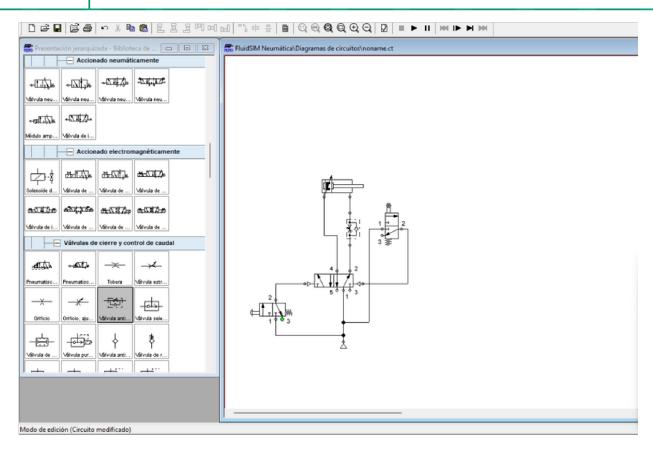
Paso 3.- Conectamos la salida 4 de la válvula 5/2 vías al cilindro doble efecto. (Ilustración 2.3).



Paso 4.- Conectamos las salidas de las válvulas 3/2 vías al accionamiento neumático de la válvula 5/2 vías. (Ilustración 2.4).



Paso 5.- Conectamos la fuente de aire comprimido a la entrada de la válvula 5/2 vías. (Ilustración 2.5).



Paso 6.- conectamos las entradas de las válvulas 3/2 vías a la fuente de aire comprimido. (Ilustración 2.6).

Paso 7.- cerramos todas las salidas de las válvulas. (Ilustración 2.7).

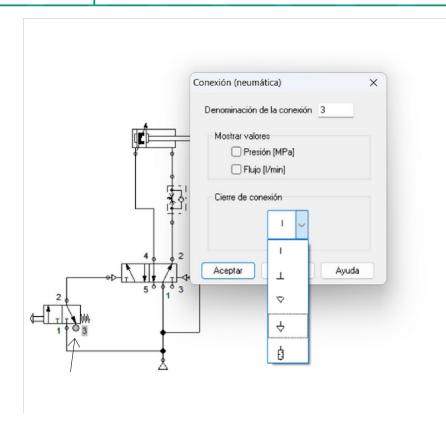
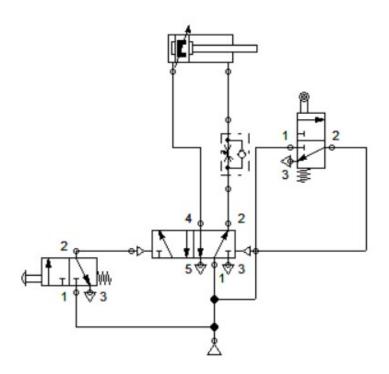



Ilustración 2.7

Así queda ya con todas las salidas cerradas. (Ilustración 2.8).

Paso 8.- Damos doble clic al rodillo para poner marca. (Ilustración 2.9).

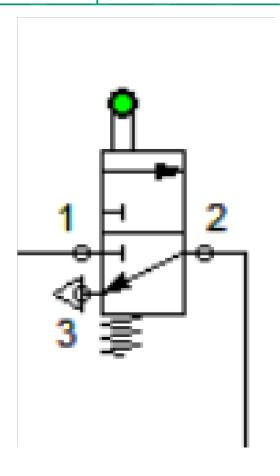
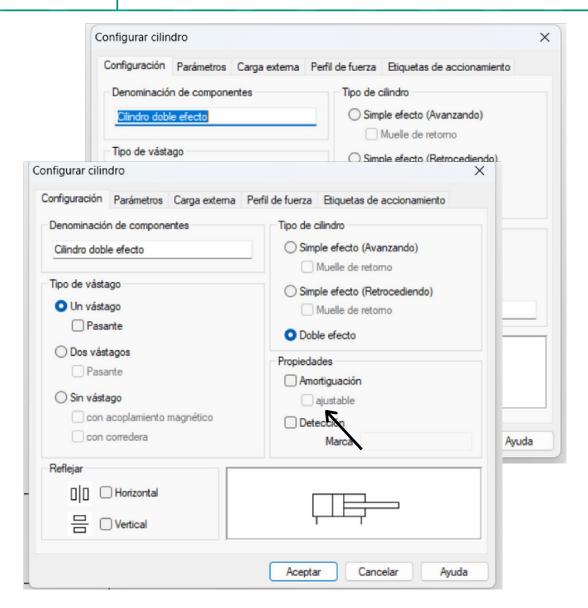


Ilustración 2.9

Paso 9.- Colocamos la marca poniendo de nombre A1. (Ilustración 2.10).



Conexión (mecánica)	×				
Marca A1					
Componente correspondiente del circuito neumático:					
Regla	de distancia				
Aceptar Cancelar	Ayuda				

Paso 10.- Damos doble clic al cilindro de doble efecto para abrir la configuración. (ilustración 2.11).

Paso 11.- Le quitamos la amortiguación y la detección. (ilustración 2.12).

Paso 12.- En la configuración nos vamos al apartado de etiquetas de accionamiento y en marca colocamos el nombre de nuestro rodillo y ponemos de 100 a 100 ya que ese es nuestro límite del cilindro. (ilustración 2.13).

Configuración	Parámetros	Carga externa	Perfil de fu	erza Etiq	uetas de acciona	amiento
	Marca	Inicio	Posición	Fin		
A1			100	100	mm (0100)	~
					mm (0100)	~
					mm (0100)	~
					mm (0100)	V
					mm (0100)	~
					mm (0100)	~
Componente	s correspondi		♦			

Así se vería ya con la marca del rodillo y el cilindro de doble efecto. (ilustración 2.14).

Paso 13.- Damos doble clic en la válvula estranguladora antirretorno para configurar el grado de abertura y seleccionamos mostrar grado de abertura. (Ilustración 2.15).

Válvula antirretorno estrangulado	ora							×
Grado de abertura								
→	1 ((0100 %)		/ Most	rar grad	o de abe	ertura	
	1		,	K		'	1	
Caudal nominal estándar								
Estrangulación	45	I/min (0.	1500	00)		~		
Válvula de antirretorno	65	I/min (0.	1500	00)		~		
			Acep	otar	Car	ncelar	As	vuda

Así quedaría ya nuestro circuito armado. (Ilustración 2.16).

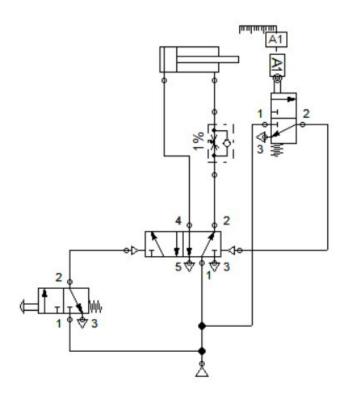


Ilustración 2.16

EJERCICIO

1: Un cilindro de doble efecto tiene un diámetro de embolo de 80mm y un diámetro de vástago de 25mm. La presión de trabajo es de 6 bares. ¿Cuál es la fuerza teórica que el cilindro entrega en el avance y en el retroceso?

Paso 1.

Calcular la fuerza teórica de avance

$$F = P * S$$

Donde: $F=Fuerza(Newton)P=Presion(Pascal)S=Superficie(m^2)$ conversion de bares a pascales $1\bar{c}$ 100000 pa(6)(100000)=6000000 pa calculo de area del embolo para fuerza de avance $A=\pi(r^2)$

$$A = \pi (0.04 \, m)^2$$

$$A = \pi (1.6 \times 10^{-3} \text{ m}^2) A = 5.0265 \times 10^{-3} \text{ m}^2 \text{Fuerza de avance}$$

$$F = (600000)(5.0265 \times 10^{-3}) = 3015.92 N$$

Paso 2.

Calcular fuerza de retroceso

F=P*SSolo que en este caso la superficie se calcula de manera distinta ya que se debe de restar el área del vástago a el área del embolo para así obtener la superficie útil sobre la cual se está ejerciendo la presión.

Fórmula para el área en la fuerza de retroceso

 $A = \pi (R^2 - r^2)$ Donde R = Radio del embolo (m)r = Radio del vastago (m)calculo del area

$$A = \pi \left((0.04 \, m)^2 - (0.0125 \, m)^2 \right) A = \pi \left((1.6 \times 10^{-3}) - (1.5625 \times 10^{-4}) \right) A = \pi \left(1.44375 \times 10^{-3} \right)$$

$$A = 4.4356 \times 10^{-3} \, m^2 Fuerza de retroceso F = (600000) (4.3196 \times 10^{-3} \, m^2) = 2721.404 \, N$$

Ejercicio parte 2

Si el mismo cilindro realiza la carrera de salida de 100mm en 1s. Calcular el caudal y la potencia necesarios del compresor.

Para realizar el cálculo del caudal necesitamos primero tener en volumen del cilindro

Paso 1.

El primer paso es calcular el volumen de nuestro cilindro

Formula para calcular el volumen del cilindro V = A * h Donde :V = Volumen $\binom{m^3}{m}$

A = Area del embolo $(m^2)h = A$ ltura o carrera del embolo (m)calculo del volumen

$$V = (5.0265 \times 10^{-3} \, m^2)(0.1 \, m) = 5.0265 \times 10^{-4} \, m^3$$

Paso 2.

Calcular el caudal

$$Q = \frac{V}{t} Donde Q = Caudal \left(\frac{m^3}{s} \right) V = volumen \left(m^3 \right)$$

$$t = tiempo(s)Q = \frac{5.0265 \times 10^{-4} \, m^3}{1 \, s} = 5.0265 \times 10^{-4} \, \frac{m^3}{s}$$

Calcular la potencia necesaria del compresor.

Paso 3

Cálculo de la potencia

$$P = \frac{p * Q}{E} Donde : P = Potencia(Watts) p = Presion(pascales) Q = Caudal\left(\frac{m^3}{s}\right)$$

$$E = Eficiencia(\%)P = \frac{((6000000)(5.0265 \times 10^{-4}))}{85\%} = 354.8117W$$

Anexos

https://www.youtube.com/watch?v=18BFrO5Cnlw

https://www.youtube.com/watch?v=4nCcFXZfcWU

Conclusión

En este documento se mostraron los diferentes pasos que se llevaron a cabo explicando paso por paso y que es lo que se hizo para armar el circuito habiendo resumido estos, también se mostraron los cálculos que se hicieron del ejercicio mostrado.

Además de lo mostrado en el documento se anexarán videos explicando de igual manera el circuito neumático como se armó y su funcionamiento al igual que el funcionamiento se las piezas, al igual un video explicando los cálculos para mayor entendimiento de ellos.

Bibliografía

Croser, P. (1991). Neumática: manual de estudio. Nivel básico.

Jairo David Centeno Valencia, V. E. (2010). Manual consultivo de control neumático y electroneumático utilizando el software festo fluidSIM.

Trejo, S. M. (1996). Automatizacion, Neumatica y Electroneumatica.