Fundamental science and applied research and technology development (RTD) are facing significant challenges that particularly compound to the notorious credibility, reproducibility, funding and sustainability crises. The underlying, serious shortcomings are substantially amplified by a metrics-obsessed publication culture, and a growing cohort of academics fishing for fairly stagnant (public) funding budgets. This work presents, for the first time, a groundbreaking strategy to successfully address these severe issues; the novel strategy proposed here leverages the distributed ledger technology (DLT) “blockchain” to capitalize on cryptoeconomic mechanisms, such as tokenization, consensus, crowdsourcing, smart contracts, reputation systems as well as staking, reward and slashing mechanisms. This powerful toolbox, which is so far widely unfamiliar to traditional scientific and RTD communities (“TradSci”), is synergistically combined with the exponentially growing computing capabilities for virtualizing experiments through digital twin methods in a future scientific “metaverse”. Project contributions, such as hypotheses, methods, experimental data, modelling, simulation, assessment, predictions and directions are crowdsourced using blockchain, and captured by so-called non-fungible tokens (“NFTs”). The so enabled, highly integrative approach, termed decentralized science (“DeSci”), is destined to move research out of its present silos, and to markedly enhance quality, credibility, efficiency, transparency, inclusiveness, sustainability, impact, and sustainability of a wide spectrum of academic and commercial research initiatives.
Show LessDucrée, J., Codyre, M., Li, T., Walshe, R. & Bartling, S. (2022). DeSci - Decentralized Science [version 1] [preprint]. DeSci Community. https://doi.org/10.20944/preprints202205.0223.v1
No reviews to show. Please remember to LOG IN as some reviews may be only visible to specific users.