27th International Conference on Science, Technology and Innovation Indicators (STI 2023)
The Evolving Scholar - BMD 2023, 5th Edition
The Evolving Scholar | ARCH22
This paper provides an in-depth introduction to research methods and discusses numerous aspects related to the research process. It begins with an overview of research—what it is, why it is important, what forms it might take, and what its fundamental components are—before shifting its attention to the design of research and the benefits and drawbacks of various approaches. In addition, the article details the purpose of and procedures for a literature review. Data collection, its varieties, technique selection, validity, and reliability are then addressed. Ethics in research and guidelines for research are also discussed, along with the various types of data analysis, and how results should be obtained. In addition, the paper covers topics such as reference and citation management. This paper takes a narrative approach to summarising the scholarly resources useful for introductory-level coursework in research method. Both research and writing are never-ending processes, with endless opportunities for improvement. However, the compilation of essential academic resources might help university students, researchers and research method instructors.
Over the last decade, solar energy has proven to be a key technology in transitioning to a sustainable energy system. However, current solar energy policies favour affluent households, limiting the participation of disadvantaged households in the energy transition. This leaves disadvantaged households even more vulnerable to increasing energy costs, as the recent unprecedented rise in energy prices has painfully demonstrated. To ensure that transition mechanisms are accessible to all households, solar energy policy needs to consider spatial justice. With this perspective, we go beyond technical analyses of solar energy potential and use a socio-spatial approach to evaluate the adoption of solar energy in The Hague. This policy brief is based on a research study that evaluated the transition to solar energy in the city of The Hague, The Netherlands, from a spatial justice perspective. Through a socio-spatial analysis at the postcode level, the research identified four distinct groups with varying levels of access to solar energy. The results show that these groups are not only strongly segregated across the city but also overlap with existing socio-spatial inequalities. The four levels of access to solar energy are then compared to current solar adoption rates and technical rooftop energy potential in the city. Results show that decreasing levels of access to solar energy align with decreasing adoption rates, revealing that current policies fail to provide equitable access to solar energy, leading to inequalities in adoption rates. Furthermore, the study quantifies how much of the technical potential available in The Hague is in areas where access to solar energy is limited, revealing a significant amount of untapped technical potential with the potential to address existing socio-spatial inequalities. Finally, two groups of interest and related leverage points for future policy interventions to address equity in the transition to solar energy in The Hague were identified.
São Paulo, a city characterised by rapid urbanisation, long-term governmental neglect, and a widening societal gap, faces a complex challenge. Communities within the city experience extreme multidimensional inequality, marked by socio-economic vulnerabilities which stem from their marginalisation from society. In addition, the degradation of critical ecological systems and mounting climate change pressures intensify the risks of environmental disasters, creating a situation of extreme double exposure. This means that vulnerable communities in São Paulo contend with not only socio-economic vulnerabilities but also face heightened environmental risks. While Brazil’s policies took significant steps in the 1980s with the creation of the Estatuto da Cidade (City Statute in 2001) to address social inequality, current solutions are still unable to adequately reduce the multitude of vulnerabilities that marginalised communities face. In order to ensure a high standard of liveability and foster an environment of resilience for São Paulo communities, a comprehensive analysis that exposes the factors that contribute to the creation of multi-dimensional inequality is required. Firstly, recognising that inequality is not just a matter of income but is intricately linked to spatial and environmental dimensions. This policy brief calls for a holistic approach that recognises the interconnectedness of socio-economic vulnerability and environmental risks. By adopting the principles of a socio-ecological approach and conducting a comprehensive socio-spatial analysis, São Paulo can chart a path towards a more equitable and sustainable future for all its residents.
The acquisition of soft skills among young children is of paramount importance, as these skills are highly valued in today's workplace. Research indicates that the ages of four-to-five are an ideal margin for soft skill acquisition in young children, taking advantage of children's receptiveness to new experiences. In this context, an exploratory study was conducted using Engeström's third-generation Cultural Historical Activity Theory model as a theoretical basis and incorporating a methodological framework of Collins and Brown's Design-Based Research. A co-creative process was used to ideate a blueprint for a mobile application that would develop creative thinking, communication, and social media literacy among young children within the local context of the Western Cape. Through this process, two new design principles were uncovered, alongside further principles and guidelines, to support the development of mobile applications for young children targeting soft skills development in a localized manner, with a focus on structured design principles governed by co-creation and literature reviews to support informal educative learning. In conclusion, this exploratory study provides a blueprint for addressing gaps in the literature and serves as a helpful guide for educators and developers looking to instill soft skills among young children through the use of mobile technology.
Understanding and mastering handling quality is a critical concern for bicycle designers, as it directly impacts safety, comfort, and performance. However, this aspect has received limited attention to date. Existing literature offers experimental handling quality indicators based on bicycle kinematics, but their validity has yet to be established. This study aims to assess the predictive power of these indicators using experimental data derived from subjective assessments of handling quality. These data, obtained from a protocol involving 20 participants and 2 bicycles, enabled testing 39 experimental indicators. The results indicate that certain vehicle kinematic quantities are indeed correlated with the perception of handling quality but with low predictive power. Indicators based on handlebar movement are the most effective in explaining the sensation of handling quality. These indicators perform particularly well at low speeds, where physical and cognitive workload are associated with the quantity of control actions on the handlebars.
To develop advanced motorcycle assistance systems, the focus is shifting towards the rider's abilities. A model in (Scherer et al. 2022) predicts motorcycle dynamics influenced by riders without specific rider or vehicle parameters. It employs mathematical functions to describe speed and roll angle changes, revealing differences among riders. Unlike previous stochastic approaches, this model allows clear interpretation of measurement data with rider-specific parameters like correction amplitudes and trends, aiding critical maneuver identification. The paper investigates applying this rider model to real traffic data. For this purpose, three riders (two experienced frequent riders and one inexperienced infrequent rider) on two different vehicles (Honda CBF 1000 and BMW K1200R Sport) were recorded and examined on a sample basis using a validated low-cost measurement technique with a total amount of n = 40 measurements. Taking into account evaluation curves suitable for proving the methodology, two consecutive country road curves were selected with a respective change in direction (equivalent to a yaw angle change of the vehicle between entering and exiting the curve) of approx. 180°. These were each driven through 5 times by all three riders under constant conditions in good, summer weather and road conditions. In addition, one of the riders drove through them in wintry and less than optimal road conditions at the beginning of the season. Initial findings assess the model's transferability to real traffic. The investigation results show its applicability, with rider-specific riding styles and parameterization functions, as well as the need to repeat the study with a large number of samples. The model accurately predicts future positions, with over 85% of maneuvers having less than a 2% lateral deviation. This demonstrates applicability under real conditions, confirming its efficacy beyond the closed terrain test in (Scherer et. al., 2022). In the future, this model will enable rider-dependent trajectory predictions with uncertainty intervals in real traffic situations.
We previously presented a narrow-track tilting tricycle with a variable stability mechanism integrated between the swing arms that support a pair of rear wheels, in the so-called “delta” configuration, and with recumbent seating. We now examine adopting that variable stability mechanism to work on a tricycle with a split-parallelogram linkage between a pair of front wheels, in the so-called “tadpole” configuration, and with upright seating. It was fairly straightforward to allow for tilting by replacing the front wheel and fork with a split parallelogram comprising two paired A-arms and kingpins, controlling the motion of the two halves with a bell crank and two tie rods, and then varying the handling of the vehicle by moving the connection point of the tie rods on the bell crank, just as we did with the swing arms of the previous vehicle. We have also separated the two tasks of positioning the tie rod ends on the bell crank and enforcing symmetry of the tie rods. The former does not require much force and can be easily implemented with Bowden cables, but the latter does require large forces and is better implemented with a local rigid-bar linkage. Implementing decent Ackermann steering geometry, allowing for both large tilt and steer angles, and decoupling tilting from steering, however, proved to be quite a challenge, at least while we attempted to implement it with bar linkages. Fortunately, we discovered a 2006 paper by Prof Drstvenšek et al. describing a Bowden cable and cam system that looked promising. Finally, the resulting vehicle handles very nicely. When in “full bicycle” mode, it handles quite similar to the original bicycle that we had converted into the tricycle. When in “rigid tricycle” mode, it keeps the rider upright when stationary or when riding at a walking pace. In between these two extremes, it handles even better than the original bicycle in a slalom course and when slowly following a straight line.
Bicycle mobility has become increasingly popular as a sustainable and healthy means of transportation. Bicycles are not only a cost-effective transportation mode but also help reduce traffic congestion and air pollution. However, the efficiency and safety of bicycling largely depend on the optimization of bicycle components, such as the tires. The importance of bike tire optimization cannot be underestimated as it can affect both bicycle dynamics and bicycle performance. Due to the lack of multi-physical mathematical models able to analyze and reproduce complex tire/road contact phenomena, useful to predict the wide range of working conditions, this research aims to the development of a bicycle tire thermal model. The main outcome is to provide the full temperature local distribution inside the tire’s inner rubber layers and the inflation chamber. Such kind of information plays a fundamental role in the definition of the optimal adherence conditions, for both safety and performance maximization, and as an indicator of the proper tire design for various applications, each requiring specific heat generation and management. The experimental validation has been carried out thanks to an innovative test-rig developed at Politecnico di Milano. It is known as VetyT (acronym of Velo Tyre Testing), and it complies with the standard ISO 9001-2015. It has been specifically instrumented for the activity, acquiring the external tire temperatures to be compared with the respective simulated ones, under various workingconditions.
Statistics show, that bicycles become more and more popular as transportation method, e.g. 25% increase in Germany between 2019 and 2021 (Sinus, 2021). To ensure the safety of bicycle riders as vulnerable road users (VRUs), analysing critical traffic situations is essential (Wendel, 2020). To be able to explore such situations in a safe environment, a bicycle simulator was built at DLR that can be used stand-alone or in combination with other simulators in order to integrate other traffic participants such as pedestrians or car drivers (Fischer et al., 2022; Martinez Garcia, 2021). This work describes the development of the simulator with the goal of creating a realistic and therefore immersive cycling experience (Jacobi, 2022; Janssen, 2022). A detailed description of the implementation of the recent improvements is provided as well as an objective evaluation for validation of the simulator.
A 2-Skate, short for a Two-Inline-Ice-Skates-Single-Track-Vehicle, was built to show that without wheels, gyroscopic effects, fork angle, trail and power-to-the-wheels, a person could ride it. But the rider might have been a circus acrobat that can also sit backwards on his bicycle handlebar, and pedal while juggling and turning around in a circle. So this current study aimed at determining if normal persons can ride the 2-Skate with confidence, with the same phase lag between torso and vehicle leaning while slaloming, and the same torso and vehicle lean angles in steady state curves as predicted. A protocol was designed and 13 independent riders tested the 2-Skates. On their first trial, with the exception of a 79 year old, they could all ride it and go slaloming. Three did the phase lag and lean angle tests and obtained similar results, confirming the prediction of the Torso-Arms-Handlebar Steering Theory first presented by Ethier (1974), with differential non-holonomic and servomechanism system equations, and further explained on the web with access to recently revised equations. This confirmation (a) sheds light on how bicycles are steered, (b) clarifies that Countersteering is done automatically at low speeds, (c) supports and clarifies the way mountain bike steering is taught, (d) suggests a slight modification of the way motorcycle Countersteering is taught, (e) can be used to develop a different approach to 2-Wheeler simulators, (f) and can renew interest for motorcycles with seat belts and protective structure like the BMW-C1, and the closed-cabin electric motorcycles like the ultra-low drag and award winning Peraves e-Tracer.