The use of bicycles as a cheap and healthy way to travel the “last mile” is spreading widely in the cities. This new way of dealing with short trips, known as “micro-mobility”, is also fostered by the new awareness of the global impact of ICE vehicles and rising fuel costs. In recent years, also cargo bikes are knowing a large use, both for families with children and for delivery purposes. They are featured by a long frame that can carry loads usually placed in between the rider and the front wheel. This requires fairly skilled riders to deal with driving dynamics, different from the common bicycle we are used to (Miller, M., 2023). They can easily reach a speed of 25 km/h (according to the regulations in most EU countries) being usually pedal-assisted. Tyre characteristics may strongly affect bicycle dynamics (Bulsink, V., 2015). This applies even more for cargo bikes as they are featured by remarkable load variation (load/unload configuration), relatively high speed and torque applied to the tyres, both during acceleration and braking phases. In this context, it is important to have a good understanding of tyre characteristics. With the aim of designing safer and more performant bicycles, numerical models are required. Furthermore, existing mechanical models of bicycles mostly ignore tyre dynamics and need to be updated with realistic tyre models (Dell’Orto, G., 2022). Measurements were performed with VeTyT, an indoor test-rig specific for bicycle tyres, designed at the Department of Mechanical engineering of Politecnico di Milano (Figure 1) (Dell’Orto, G., 2022). It is the only test-rig for bicycle tyres complying to the standard ISO 9001-2015. We can measure lateral force and self-aligning torque, as tyre parameters vary. The tyre 20”x2,15 was mounted on a standard aluminum rim and tested on flat track. The specific dimensions of the cargo bicycle wheel forced us to update the test-rig, designing a new steel fork to ensure sufficient stiffness and new steel plates to carry the wheel on flat track (Figure 2). Inflation pressure was set to 400 kPa, as recommended by the manufacturer. Tests were performed applying a vertical load of 411 N and 526 N, according to the technical limits of the test-rig. The camber was set to 0 degree, as first stage of the study. The lateral force and self-aligning torque as function of the slip angle are shown in Figure 3 and Figure 4, respectively. It is clear the difference in outcomes adjusting the vertical load. As the vertical load increases, both the lateral force and the self-aligning torque increase in magnitude as well. As expected, the tyre can generate higher forces with higher vertical load. It is worth noticing that the peak value of lateral force will be reached for very large slip angles (> |6| degrees, as maximum value tested in this study). Tyres for cargo bicycles are designed to carry large loads, therefore we expect to reach saturation conditions for higher vertical forces or, conversely, large slip angles. The cornering stiffnesses are reported in Table 1: for vertical load 526 N it is 23% higher than that found at 411 N.
Show LessDell'Orto, G., Ballo, F., Mastinu, G., Happee, R. & Moore, J. (2023). Indoor measurement of the lateral characteristics of a cargo bicycle tyre [version 2; peer review: 1 accepted, 1 minor revision]. The Evolving Scholar - BMD 2023, 5th Edition. https://doi.org/10.24404/644ba1e13c57633bb23a9dc6
No reviews to show. Please remember to LOG IN as some reviews may be only visible to specific users.